3
» . o

Delense, Waslimon Headquarters Services, Directorate for onnaﬁon Operations and Reports 070 b

AFRL-SR-AR-TR-03- —
REPORT DOCUMENTATION PAGE
TR e el e o o e CHOy b aka 5]

e OB sontror manber. PLEASE DO NOT RETURN Y GUR FORM O TH e, Aaovemz'gg" be ubject 0 any penalty !
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

15 July 2003 Final Technical Report 1 Jan. 2000-30 Nov. 2002

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Robust Mobile Multimedia Communications

§b. GRANT NUMBER
F49620-00-1-0117

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 8d. PROJECT NUMBER
Lance C. Pérez
Michael W. Hoffman 5e. TASK NUMBER
Khalid Sayood)
. 6f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Department of Electrical Engineering NUMBER
209N WSEC

Univ. of Nebraska, Lincoln
Lincoln, NE 68588-0511

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ‘ 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Office of AFOSR

Scientific Resesearch (AFOSR)

11. SPONSOR/MONITOR'S REPORT

This report describes the final results obtained on this project. We detail the technical
contributions made under the support of this grant. The technical contributions are in the
two focus areas

1. Time-varying convolutional codes and their application to turbo codes.

2. Joint-source channel coding for multimedia applications.
Results in the area of time-varying convolutional codes are discussed including the discovery
of a new time-varying convolutional code that achieves the Heller bound and has free distance
greater than the best time-variant convolutional code. The report also investigates the
appllcatlon of time-varying convolutional codes as component codes in turbo codes. The work
done in this area resulted in a new time-varying component code that outperforms the
celebrated big numerator, little denominator (BNLD) codes of Massey, Takeshita and Costello.
Finally, this report contains a thorough simulation comparison of the state of the art of

joint-source channel coding schemes for image transmission,

NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT
N/A ADWQV d for nublic releass]
, . T HOY,
C? i".;‘yi‘}‘l égi zgg:’z;ied 2 003082 2 1 44 1
13. SUPPLEMENTARY NOTES , |
N/A ‘ |
14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES
a. REPORT b. ABSTRACT . THIS PAGE 19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev 8-98)
Prescribed by ANSI Std. Z39.18

Robust Mobile Multimedia Communications

Final Technical Réport for
Grant Number F49620-00-1-0117
1 January 2000 to 30 November 2002

submitted to
Dr. Jon Sjogren

Director, Signals Communication and Surveillance
Air Force Office of Scientific Research

Lance C. Pérez, Michael W. Hoffman and Khalid Sayood
with contributions from
Christopher G. Hruby, Fan Jiang and Devrim Ayilldiz

Department of Electrical Engineering
University of Nebraska, Lincoln
Lincoln, NE 68588-0511

15 July 2003

Contents

1 Summary
1.1 Personnel Supported

1.2 Technical Publications

2 Technical Results

8 Time-Varying Convolutional Codes

......................

......................

3.1 Periodic Time Varying Convolutional Codes
3.2 PreviousResults e e
3.3 Search Techniqueand Result
3.3.1 The FAST Algorithm for Time Invariant Convolutional Codes
3.3.2 Modification to FAST for Periodic Time Varying Codes
333 Search Technique i i ittt i ii e
334 SearchResults it
34 Simulation Results e e

4 Time-Varying Turbo Codes
41 Introduction.
4.2 Time-varying Component codes

43 Conclusion,

5 Joint Source-Channel Coding
5.1 Introduction...................

5.2 The Idea of Joint Source and Channel Coding

......................

......................

......................

......................

......................

10

13

13

20

22

25

26

29

29

31

33

36

5.3

5.4

5.5

5.6

Joint Source and Channel Coding of Subband Coded Images Using Residual Redun-

dancy . . . e e e e e e e e e 41
5.4.1 Comparison of the Joint System to a Separated System 45
Progressive Image Transmission over Noisy Channels 46
Channel-Optimized Vector Quantization 56

List of Figures

10

11

12

13

14

15

16

17

18

19

20

Encoder for a (2,1,2,2) periodic time varying convolutional code. 10
Trellis diagram for a (2,1,2,2) periodic time varying convolutional code. 11

Simulation results of the time invariant MFD code and the (2, 1,4, P) codes found
By MOOSEI. « . o o v o it i e e e e e e e e 14

Simulation results of the time invariant MFD code and the (4,1,2, P) codes found
by Palazzo. e e 15

Simulation results of the time invariant MFD code and the (3,2,1,2) codes found
by Palazzo. it e 16

Simulation results of best time invariant codes and (2,1,4,4) codes found by Lee. . . 17

Heller bound, Griesmer bound and djre. of the time invariant MFD codes.. 18
Successor nodes at tiIme £. L. L it e e e e e e 18
An example of a weight dgree patho oo o o oo 19
Encoders of a (2,1,2) time invariant code with left side input and right side input. . 20
Trellis of the two encoders in Figure 10. 21
The weight df e path traversed backward 22>
Encoder of a (2,1,2) time invariant code with a reversed generator sequences of
encoder (a) shown in Figure 10. e 22
Trellis of the encodersin Figure 13.. o oo 23
" Flow chart 6fthe FAST'a,lgorithm. e [. 24
Flow chart of the FAST algorithm when dfree is unknown. 25
Flow chart of the modified FAST algorithm. | 26
Flow chart of the modified FAST algorithm when dfre. is unknown. 27
Simulation of (2,1,7,2) No.L. 30
Simulation of (2,1,7,2) No.2. 31

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Simulation of (2,1,7,2) No.3. o . oo e e 31
Simulated results of the Berrou turbo code, the memory 8 BN-LD turbo code, and
the memory 6 BN-LD turbo code with 18 decoding iterations. All codes are rate 1 /3
with random interleaver of length 16384.o 33
EXIT chart of the Berrou turbo code with interleaver of length 16384. 34
EXIT chart of the memory 8 BN-LD turbo code with interleaver of length 16384. . . 34
EXIT chart of the memory 6 BN-LD turbo code with interleaver of length 16384. . . 35
EXIT chart of the TC1 with interleaver of length 16384. 36
Simulated BER performance of the Berrou turbo code, the memory 8 BN-LD turbo
code, the memory 6 BN-LD turbo code, TC1, and TC2 with 18 decoding iterations.
All codes are rate 1/3 with random interleaver of length 16384. 37
EXIT chart of TC2 with interleaver of length 16384. 37
Simulated BER performance of the Berrou turbo code, the memory 8 BN-LD turbo

code, the memory 6 BN-LD turbo code, TC1, and TC2 with 18 decoding iterations.
All codes are rate 1/3 with spread interleaver of length 16384 and spreading factor 20. 38

System diagram of a joint source-channel coding scheme. 41
System diagram of a subband coding scheme.00 42
Test image used for simulation results.o 43

Performance comparison of a concatenated joint source-channel coding schemes with

and without a nonbinary convolutional code. 45
Rate 1/2 Nonbinary convolutional encoder. 46
Block diagram of a separated system. oo 47
Performance comparison of joint and separated systems. 47
1-level Decomposition used in SPIHT. 48
Two level and five level decompositions used in SPIHT. 48
Spatial orientation tree used in SPIHT. 49
SPIHT's rate versus PSNR performance for the test image. 51

41

42

43

44

45

Reconstructed images using VQ (first column) and SPIHT (second column). 52
Performance comparison of SPIHT with punctured convolutional coding at different
Performance comparison of SPIHT with punctured convolutional coding to a con-
catenated subband joint-source coding channel scheme. 55
Performance comparison of SPIHT with punctured convolutional coding to a con-
catenated subband joint-source channel coding scheme with a nonbinary convolu-

tional encoOder..t i et e e e e e e e e e e e e e e e e e e e b6

Performance comparison of a vector quantization (VQ) scheme to a channel opti-
mized vector quantization scheme (COVQ). 60

List of Tables

10

Encoding of the code in Figure 1 with input sequence ug, ¢) = (10100). 11

The (2,1,4) time invariant MFD code and the (2,1,4, P) periodic time varying
convolutional codes found by Mooser with P=2and3. 13

The (4,1,2) time invariant MFD code and (4,1,2, P) periodic time varying convo-
lutional codes found by Palazzo with P =2,3,4,and 5. 13

The (3,2,1) time invariant MFD code and the (3,2,1,2) periodic time varying con-
volutional code found by Palazzo. oo 14

The (2,1,4) time invariant MFD code and the (2,1,4,4) periodic time varying con-
volutional codefound by Lee. oo oo 14

(2,1,7,2) Codes With Free Distance 11. e e e e e e 28

(2,1,7,2) Distance Spectrum. Notice that the first distance with nonzero spectrum
IS A reee « « v v e e e e e 28

Generator matrices of the time-varying component codes used to build turbo codes. 35
Comparison of SPIHT versus VQ as a function of rate. e e 52

Rate allocation for SPIHT + RCPC System. oo 54

1 Summary

This grant supported research in the area of robust mobile multimedia communications with two
focus areas:

e Time-varying convolutional codes and their application to turbo codes.

e Joint-source channel coding for multimedia communications.

The work performed under this grant led to significant contributions in both areas and resulted
in three (3) conference papers and three (3) journal papers. A detailed discussion of the technical
results forms the majority of this report and begins in Section 2.

The grant and matching funds provided partial support for three (3) faculty members and six (6)
graduate students, including two U.S. citizens. The work performed by these students has resulted
in three (3) Master’s degrees and will result in an additional two (2) Master’s degree and one (1)
Doctoral degree. In addition, worked performed under this grant is included in the book Trellis
and Turbo Coding by Christian B. Schlegel, of the University of Alberta, and Lance C. Pérez, of
the University of Nebraska, Lincoln, to be published by the IEEE Press/John Wiley and Sons in
the Fall of 2003.

1.1 Personnel Supported

Principle Investigator: Lance C. Pérez, Ph.D.

Co-Principle Investigator: Michael W. Hoffman, Ph.D.

Co-Principle Investigator: Khalid Sayood, Ph.D.

Research Assistant: Qian Hu, M.S.E.E., University of Nebraska, Lincoln, December 2000.
Research Assistant: Gulay Ozkan, M.S.E.E., University of Nebraska, Lincoln, December 2000.
Research Assistant: Devrim Ayilldiz, M.S.E.E.,University of Nebraska, Lincoln, May 2001.

Research Assistant: Christopher G. Hruby, M.S.E.E. University of Nebraska, Lincoln, expected
August 2003.

Research Assistant: Matthew Becker, M.S.E.E. University of Nebraska, Lincoln, expected Au-
gust 2003.

Research Assistant: Fan Jiang, Ph.D. University of Nebraska, Lincoln, expected August 2004

1.2 Technical Publications

Journal Publications

1. Q. Bao, M. W. Hoffman, and K. Sayood, “Multiple description imaged coding by vector quan-
tization”, submitted to the IEEE Transactions on Circuits and Systems for Video Technology.

2. Q. Hu and L. C. Pérez, “Time-varying convolutional codes that meet the Heller bound”, in
preparation for the IEEE Transactions on Information Theory.

3. F. Jiang, M. Becker, and L. C. Pérez, “Time-varying turbo codes”, in preparation for IEEE
Communications Letters.

Reviewed Conference Proceedings

1. F. Jiang, M. Becker and L. C. Pérez, “Turbo Codes with Time-Varying Component Codes”,
2003 Conference on Information Sciences and Systems, The Johns Hopkins University, Balti-

more, MD, March 13, 2003.

2. Q. Hu and L. C. Pérez, “Some Periodic Time-Varying Convolutional Codes with Free Dis-
tance Achieving the Heller Bound,’ 2001 International Symposium on Information Theory,
Washington D.C., June 28, 2001.

3. Q. Hu and L. C. Pérez, “Time-Varying Convolutional Codes with Large Distance,” 2001
Conference on Information Sciences and Systems, The Johns Hopkins University, Baltimore,
MD, March 21, 2001.

Masters Theses

1. Q. Bao, Multiple Description Image Coding Over Noise Channels by Vector Quantization,
May, 2000.

2. G. Ozkan, Design of Variable Length Codes for Noisy Channels, December 2000.

3. Q. Hu, Design and Analysis of Time-Varying Convolutional Codes, December 2000.

4. M. Becker, Practical Issues of Turbo Coding and Iterative Decoding, expected August 2003.
5. C. Hruby Pmperties of Low Density Parity Check Codes, expected August 2003.

Doctoral Dissertations

1. F. Jiang, Structural Properties and Applications of Time-varying Convolutional Codes, ex-
pected August 2004.

2 Technical Results

In the remainder of this report, we detail the technical contributions made under the support of
this grant. The technical contributions are in the two focus areas

¢ Time-varying convolutional codes and their application to turbo codes.

o Joint-source channel coding for multimedia applications.

Section 3 discusses results in the area of time-varying convolutional codes. This includes the
discovery of a new time-varying convolutional code that achieves the Heller bound and has free
distance greater than the best time-variant convolutional code. Section 4 discusses the application
of time-varying convolutional codes as component codes in turbo codes. The work done in this area
resulted in a new time-varying component code that outperforms the celebrated big numerator, little
denominator (BNLD) codes of Massey, Takeshita and Costello [14]. Finally, section 5 contains a
thorough simulation comparison of the state of the art of joint-source channel coding schemes for
image transmission.

3 Time-Varying Convolutional Codes

3.1 Periodic Time Varying Convolutional Codes

In general, a periodic time varying convolutional code is denoted as a (n, k, m, P) code, where n, k,
and m are defined in the same way as for time invariant codes and P is the period of the code. The
ordered set {C;,i = 1, 2,..., P} represents the time invariant codes that make up the periodic
time varying code.

vy

&

v

5[2
:

v

@
s

v®
=0

e T\E)
TN

Figure 1: Encoder for a (2,1,2,2) periodic time varying convolutional code.

AU

10

Figure 2: Trellis diagram for a (2,1,2,2) periodic time varying convolutional code.

Figure 1 shows a (2,1,2,2) periodic time varying code, where E} is the encoder of a (2,1,2) time
invariant code, C;, with g) = (1 0 1) and g® = (1 1 1), and E; is the encoder of a code, Cy,
with ¢ = (1 0 0) and g¢®@ = (1 1 1). The input, u, enters both E; and Ey, while the output v
switches between the outputs of E; and outputs of Eo. The state of E; and the state of F3 are the
same at all time. This can also be understood as E; and Ej share the same memory. Therefore,
E; and E, have the same transitions in the state diagram but with different branch labels.

The trellis of the periodic time varying code is obtained by expanding the state diagram in time
and labeling branches alternatively with the branch label of E; and Es. Figure 2 shows the trellis
of the encoder in Figure 1. Let the input sequence up e = (1010 0). The encoding of this
sequence by the periodic time varying code is shown in Table 1 and its trellis is the blue path
shown in Figure 2. At time unit 0, “1” goes into E; and Ej, the state changes from Sp to S and
output becomes (1 1) since E; is on duty. Then at time unit 1, “0” enters and the state transits to
S;. The output switches to E5 and (0 1) is the output of the periodic time varying code at time
unit 1. The encoding result is shown in Table 1. This can also be obtained by following the blue
path in Figure 2. ’

Time | input u | E; output | Eo output
0 1 11
1 10 01
2 101 00
3 1010 01
4 10100 11

Table 1: Encoding of the code in Figure 1 with input sequence uj, ¢) = (10100).

From Chapter 2, uy; ;) and v|; ;) denote the input and output sequences, respectively, over the
time instants i, i+ 1, -+, j — 1 and u; is the k-tuple of input bits at time instant ¢. The free
distance for a linear time invariant convolutional code is the smallest Hamming distance between
output sequences V(o, o) resulting from distinct input sequences g, o0). It is equivalent to the

11

smallest Wg(V(o, o0)) achievable with ujy o) # 0, where wy(+) denotes Hamming weight. For
periodic time varying codes, dfrce is equal to the smallest w(vyo, o)) achievable with uj, p) # 0.
For time invariant codes, ujg o) may be considered to be all information sequences with ug # 0.
This corresponds to all the paths in the trellis diagram that leave Sp at time 0.

The condition for periodic time varying codes, up, p) # 0, states that the information sequence
can not be all zero from time 0 to P — 1. These information sequences correspond to all the paths
leaving Sp at time 0, 1, ..., or P — 1. For example, the free distance o?_qge code in Figure 1 is 4.
The path which has weight 4 is shown as the red path in Figure 2. This path corresponds to the
information sequence uy 4y = (0 1 0 0). It is the only path of weight 4. This path leaves So at time
1. Note that the first two information bits are (0 1). This satisfies the condition that up p) # 0
with P = 2. . ‘

The column distance of a periodic time varying code is defined in almost the same way as it is
in the time invariant case, except that instead of only one column distance d’c’,,- at each time unit
i, there are P column distances d’c’,i(j), j=1,2, ..., P, corresponding to the initial code: Cj,
j=1,2, ..., P at time unit <. That is, o

dg,z(J) = min{d(vio, i),Vﬁ), ,‘)) . ll6 74 u{,’ Cj initia.l}
= min{w(vy, ;) :uo #0 C;j initial}

wherei =0, 1, ...and j =1, ..., P. It is easy to find that d?,(1) = 3 and d%,(2) = 3 for the
code in Figure 1 through its trellis in Figure 2. ' _ AT

Like the column distance, there are P distance profiles for a periodic tiﬁle varying code. They“a;e}'
defined as _ : S
dp(]) = [dg,O(j)a dg,l(j)’ B dg,m(ﬂ)] i=12, ..., P .

where j corresponds to the initial code Cj. For instance, d?(0) and dP(1) for the periodié tlme
varying code in Figure 1 are P
d?(0) = [2, 3, 3]

and
dr(1) =2, 3, 3].

It might happen that the time invariant MFD convolutional code and the periodic time varying
convolutional code for a given rate and memory have the same free distance. For example, the
(2,1,2) time invariant code with g = [7,2] has djree = 4 and the periodic time varying code with
the encoder shown in Figure 1 also has dfree = 4. Thus, to resolve ties in dfree, two other criteria
are introduced. The first criterion is Ng,,.,, the average number of paths of weight dy..e per time
instant. The second criterion is Ig4,,,,, the average number of information bits per time instant
along paths with weight dfre.. If two codes have the same dree, the one with the smaller value of
Ng;,,, and then Iy, is said to be better. Mathematically, Ny, . and Iy, are defined as

1
Ny, .. = ﬁ#{u[o, o0) U, P) # 0, WH(V(0, o)) = dfree}

d
an 1

Idfree = .ﬁ Z wH(u[O, OO))’

Uy, oo) €8

12

where #{:} denotes cardinality and s is the set of input sequences which cause the output sequences
with Hamming weight d -

The Ny,,,, and Ia,,,, of the code in Figure 1 are 1 /2 and 1/2. There is only one path of weight 4
for this code. Therefore, Ng,,,, = 1/2. The corresponding input is ujg 4y = (010 0). The weight
of this information sequence is 1. Since there is only one path, the sum of the weight is 1 and
Idfree = 1/ 2

3.2 Previous Results

Motivated by Costello’s conjecture, early work on periodic time varying codes focus on searching for
periodic time varying codes with larger dree than the comparable time invariant codes. Mooserf|1]
found that some periodically time varying convolutional codes have the same dfre as the time
invariant MFD code, but have both a smaller Nq,,,. and Iq, .. The codes he found are (2,1,4, P)
periodic convolutional codes with P = 1, 2 and 3 and are listed in Table 2. Note that the time
invariant code, [23, 35] is the MFD time invariant code. Simulation results for these codes are shown
in Figure 3. Mooser concentrated on memory 4, rate 1 /2 codes, because it is the smallest memory
M such that Heller’s upper bound on d . = 8 is not achieved by any time invariant convolutional
code. However, Mooser did not find a periodic time varying code with memory 4 and rate 1/2 that
has djre. equal to 8.

P| r | dfree | Na,... | 1a;,.. | Generator Sequences (Octal)
112 7 2 4 |[23,35
2 11/2| 7 | 3/2 | 3 |[23,35][25,37
3(1/2| 7 | 4/3 | 8/3 | (23,35] [25,37) [27,35]

Table 2: The (2,1,4) time invariant MFD code and the (2,1,4, P) periodic time varying convolu-
tional codes found by Mooser with P = 2 and 3.

Palazzo[2] found some (4,1,2, P) periodic time varying convolutional codes with P =1, 2, 3, 4
and 5, which have the same d . as the time invariant MFD codes, but smaller Ng,,,, and ;..
These codes are listed in Table 3. Simulation results for these codes are shown in Figure 4. Note

that the [57%] code is the MFD time invariant code. Here, 573 means the generator sequences,

ou 0 1 3
gin;z;!’ are: g(g) =5, g(()) =1, g(()2) =7 and gg) =17.

r | dfree | Nyy... | Ld,,.. | Generator Sequences (Octal)
14| 10 | 1 2 |57
1/4] 10 | 172 | 1/2 |5°7 57
1/4] 10 2/3 | 2/3 | 5%7% 5%7% 57°
/4| 10 | 3/4 | 3/4 |52 5°12 520 57
/4| 10 | 4/5 | 4/5 | 5°7° 5°1° 5°7° 5212 57°

o]] cof v = Mg

Table 3: The (4,1,2) time invariant MFD code and (4,1,2, P) periodic time varying convolutional
codes found by Palazzo with P =2, 3, 4, and 5.

Palazzo[2] also found a (3,2,1,2) periodic time varying code with dg,.. greater than the time
invariant MFD code. This code is shown in Table 4, where [6,4,0 ; 2,6,6] means gf:;ﬁ't‘t are:

13

G e @.14) MFD
4 (214.2)
-O- (21,43}

Figure 3: Simulation results of the time invariant MFD code and the (2,1,4, P) codes found by
Mooser.

W@ =110,6"=100,6"=0110,6"=010,6"=(110andgf’=(110).
The (3,2,1) MFD time invariant code is listed in Table 4, too. The simulation results of these
codes are shown in Figure 5.

P| r |dfree | Nay,.. | ld;,. | Generator Sequences (Octal)
112/3 3 2 4 6,2,6; 2,4,4
212/3 4 23/2 | 66/2 | [6,4,6; 2,6,0] [6,4,0; 2,6,6]

Table 4: The (3,2,1) time invariant MFD code and the (3,2,1,2) periodic time varying convolu-
tional code found by Palazzo.

By randomly searching for period P = 4 time varying convolutional codes, Lee[3] found a code
with memory 4 and rate 1/2 which achieves Heller’s upper bound. It is the first convolutional code
with memory 4 that achieves the Heller bound. This code together with the (2,1,4) time invariant
MFD code are listed in Table 5. The simulation results for these codes are shown in Figure 6.

P| r |dfree | Nayyeo | Ldgree Generator Sequences (Octal)
1]1/2 7 2 4 23,35
211/2 8 49/4 | 178/4 | [37,20] [37,35] [33, 25][33, 25]

Table 5: The (2,1,4) time invariant MFD code and the (2,1,4,4) periodic time varying convolu-
tional code found by Lee.

Studying the performance of the codes found by Palazzo, it can be seen from Figure 4 and Figure 5
that the periodic time varying codes show a small performance improvement over the time invariant
MFD codes. In Figure 4 all the periodic time varying codes are better than the time invariant MFD
code in terms of P, and all these codes have smaller Ng,,,, and I, ., than that of the time invariant

14

S (41.2)MFD
S (41.22)
v 7 -o- (4.1,23)
..... v (81,24
25

...

Figure 4: Simulation results of the time invariant MFD code and the (4,1,2, P) codes found by
Palazzo.

MFD code. In Figure 5, the (3,2,1,2) periodic time varying code with dre. = 4 has better P, for
almost all SNR’s than the (3,2,1) time invariant MFD code with dfree = 3.

However, from Figure 3, the (2,1,4, P) codes found by Mooser do not have better performance
than the (2,1,4) time invariant MFD code even though the (2,1,4, P) codes are better in terms
of Ny, and I4,..- Also, from Figure 6, it can be seen the the (2,1,4,4) code with dfree = 8 has
almost the same performance as the (2,1,4) time invariant MFD code with d fre.. Hence, periodic
time varying codes with larger dfree than the comparable time invariant codes, or with the same
dfree but smaller Ny, and Iy, are not guaranteed for better performance at low and moderate
SNR’s than the comparable time invariant codes. In fact, the distance spectrum is the main factor
in determining the error probability when Viterbi decoding is used for a convolutional code.

" The code search in this thesis has two goals. First, to try to demonstrate the argument of Johan-
nesson [4] that the Heller bound can be applied to time varying codes but the Griesmer bound can
not. From Figure 7, it can be seen that there is a gap between the Heller bound and the Griesmer
bound for memories 5, 12, and so on. For example, the Heller bound for rate 1/2 memory 5 time
varying codes is 9 while the Griesmer bound is 8. A search for (2,1,5, P) periodic time varying
codes with dfree = 9 is performed in this thesis. Memory 5 is the smallest for rate 1/2 codes
where the Griesmer bound does not agree with the Heller bound. The second goal of the search
is to find new codes of rate 1/2 and memory greater than 5 with larger free distance than the
comparable time invariant MFD codes. The first interesting class of codes is the (2,1,7, P) codes
with dfree = 11.

15

Figure 5: Simulation results of the time invariant MFD code and the (3,2,1,2) codes found by
Palazzo.

3.3 Search Technique and Result

So far there has been little success in finding good convolutional codes in terms of large free distance
by algebraic methods. Most codes are found by computer search [5, 6, 7, 8, 9]. A computer aided
code search based on the FAST algorithm [10] for computing the distance spectrum of time invariant
convolutional codes is used in this thesis. With a few modifications, FAST can be used to find the
free distance and the distance spectrum of a periodic time varying code. ’

3.3.1 The FAST Algorithm for Time Invariant Convolutional Codes

The FAST algorithm for finding the distance spectrum was developed by Cedervall and Johannesson
[10, 4]. It utilizes the distance profile to dramatically reduce the search to relatively small number
of codewords. Recall that the distance profile is the first m + 1 orders of the column distance. This
algorithm can easily be modified to find the free distance of a time invariant code and to determine
the number of nonzero information bits and path length of a codeword. '

Let ng,, . +i denote the number of paths of weight dfre. + ¢ Which depart from the all zero path
at the root node in the code trellis and do not reach the zero state until their termini. That is,
N4, +i 18 the number of codewords with weight dree + 1. n4,,,,+i is called the (i +1)th spectral
component. The sequence

N peeti i=0,1,2 ...,

is called the distance spectrum of the code.

16

% (214)MFD |

Figure 6: Simulation results of best time invariant codes and (2,1,4,4) codes found by Lee.

To compute the distance spectrum for a time invariant convolutional code encoded by a feedforward
encoder, the FAST algorithm exploits the linearity of the code and counts the number of weight
d codewords with ug # O diverging from the zero state and remerging for the first time at the
zero state. As before, u; and v; denote the input and output at time instant ¢, respectively. This
algorithm performs a sequential search in the code trellis to find a sequence of weight d and, hence,
it is essentially a progressive trellis search. For simplicity, the discussion is limited to the case of
rate 1/2. The extension to rate k/n is straightforward.

For an arbitrary node at depth t in the code trellis, let W;, where W; > d, be the accumulated
total weight of a certain path produced by ¢ — 1 inputs. A subtrellis is defined as the remaining
forward trellis connecting to this node. For each subtrellis stemming from this node with weight
d, when it terminates at the zero state it has to spend exactly weight (d — W}). Hence, each node
is labeled with the current state of the encoder and the remaining weight, that is, W = d — W.
When the node is at the zero state and its weight is W = 0, a path with weight d is found.

Let S; = (us—1 U2 -+ Ui—pm) denote the state of the encoder and let us = 0 for t < 0. This
definition is true only for feedforward encoders, since at time ¢ the content of the ith stage of a shift
register is just the input at time ¢ — 1. For feedback encodersl, the state depends not only on the
current state, but also on the combination of the previous inputs and the output of the encoder.
Therefore, the state of a feedback encoder is not (u;—y Uz --- U;-m). There are two successor
states from each state, namely, S89,; = (0, us—y -+ Ut—m-1) and Sty = (1, w1 - Wem-1),
corresponding to u; equal to zero and one, respectively. To simplify the notation, ¢ will be ignored
in the sequel. Let w® and w! denote the branch weights stemming from a node. Using these branch
weights together with the current node weight W, the two successor node weights can be expressed

lencoders with feedback connections

17

T T T T
I Helier bound
B Griesmer bound
20 H I time invariant MFD

181

Hamming distance
o > >
T L] L

-t
(=]
T

o B E - BR
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
memory

Figure 7: Heller bound, Griesmer bound and d e of the time invariant MFD codes.

Wl=W-u" and W!=W-uw
This is illustrated in Figure 8.

Figure 8: Successor nodes at time ¢.

When searching for a path in the code trellis with a given weight, a subtrellis will be explored if and
only if either of the new node weights, W? or W1 is nonnegative and if the state of the new node,
SO or S1, differs from the zero state. A negative node weight means that paths stemming from
the current node have weight smaller than d and therefore need not be extended. When the state
of the new node is zero, it means the path has reached its terminus and further extension is not
necessary. Without loss of generality, priority is given to the zero branch whenever a selection has
to be made between two new possible nodes. With this background, a straightforward algorithm
for determining the number of paths of a given weight d can be formulated as follows.

Let the root node be defined as the node with state S = (00 ... 0) and weight W = d. Correspond-
ing to the input zero and one, the two successor nodes are the node with state S®=(00 ... 0) and
weight WO = d, and the node with S! = (10 ... 0) and weight W! = d — d.0, where d, is the
Oth order column distance. For rate 1/2 codes, there is w! = d.g. Selecting the first node results

18

in the all zero path search or the replica of the search when the second node is selected. Therefore,
the search starts at the second node with state S! = (1 0 ... 0) and weight W = d —d.p and
moves forward in the code trellis. If the state of current node is S = (00 ... 1) and the new node
corresponding to zero input has weight WO = 0 and state S° = (0 0 ... 0), then the path counter
ng is increased by 1. ng is used to keep track of the number of paths with weight d. If the new
node weight is negative or if the new node is in its zero state, then the search moves backward.
Thus, all the previous information symbols have to be stored so that the algorithm can move back
until 2 new “one” branch with a nonnegative node weight is found. The search then moves forward
again. A stop condition appears when the search reaches the root node.

This basic algorithm is very time consuming. Through an example, the efficiency of the FAST
algorithm will be explained. A (2,1,3) time invariant code is used for this example. The generator

W=6 W=0

Figure 9: An example of a weight df,.. path

sequences of this code are [g(!), g®] = [74,54). It has a distance profileof d = [2, 3, 3, 4]. In Figure
9, the part of its trellis which contains the weight dfree = 6 path is shown. This path corresponds to
the information sequence ujp 5y = (11 0 0 0) and to the encoded sequence v(o, 5) = (11 01 01 00 11).
Since the column distance is the minimum of the Hamming weights of the paths with ug = 1, the
distance profile can be used as a lower bound on the decrease of the node weight along the path.
In general, the distance profile gives the minimum accumulated path weights for each of the first
m + 1 time units. Since the node weight is computed by the total weight minus the accumulated
path weight and the accumulated path weight is lower bounded by the distance profile, the decrease
of the node weight, which is the total weight minus node weight, is lower bounded by the distance
profile.

For example, at time unit 1, from Figure 9, the node weight is W = 4 due to the branch weight
w! = 2. The difference between the total weight d = 6 and the node weight 4 is 2. Hence, the
node weight decreases by 2. At time unit 2, the node weight goes down to W = 3 because of the
branch weight w! = 1. Therefore, the node weight decrease by 3. The difference between the node
weight and the total weight for time units 3 and 4 are 4 and 4, respectively. The decrease of the
node weights for the four units is 2, 3, 4, 4]. d is a tight lower bound for time units 1, 2 and 4.

Before further discussion of the algorithm, let us first look at how to move backward in the trellis.
For the two encoders shown in Figure 10, they have the same connection except the input of encoder

19

v R

JR— e
' '
s b, b, b, | by |a—e—
e e
T\ NPT
) | O
(@ (b)

Figure 10: Encoders of a (2,1,2) time invariant code with left side input and right side input.

(a) enters from left side while the input of encoder (b) enters from right side. The trellises of these
two encoders are shown in Figure 11. Comparing these two trellis, it is easy to see that the two
encoders share the same trellis structure with the same output branch label. The only difference is
that one moves from left to right (forward) and the other one moves from right to left (backward).
Therefore, in order to travel in the opposite direction in a trellis, the input should go into the
encoder from the other side. For example, let the ugg) = (1 0 1 0 0). The output of encoder (a)
is vjog) = (11 11 10 11 01) and the output of encoder (b) is vige) = (01 11 10 11 11). Note the
order of theses two outputs are reversed due to the opposite travel direction. These results can be
obtained by following the two red paths in Figure 11.

If the search traverses this path in the opposite direction, it will get the same total weight but
different node weights. The node weight can be explained as the weight that needs to be spent on
the remainder of this path (backward). It is the decrease of node weight when moving forward.
Thus, the node weights are lower bounded by the distance profile when moving backward in the
trellis. In Figure 12, the distance profile is used as a lower bound on the node weight along the
path. Notice that if a node has weight less than this bound, then every path leading backward to
the zero state will give a negative node weight at the root node. For example, if the node weight in
state (001) is less than d.3 = dcm = 4, this node will not be extended when traversing the trellis
backward. This is because, from the state (001) in that path, at least weight 4 needs to be spent
for the next 4 steps to reach the all zero state. More generally, the weight of a backward path
stemming from a node in state S # (00...0), starting with a one branch and eventually leading to
the root node (zero state), is lower bounded by d¢ m.

The use of the distance profile as a lower bound on the node weights works for every path from
the end to the root node. Moving backward from state S, two possible states S~ and S~! will
be reached, where The minimum weight of the backward paths stemming from the states S—0 and

S = (7..7710...00)
N e

{-—1 zeros
S0 = (7...7100...00)
N e

1 zeros
S~1 = (?...7100...01)

Ny e

-1 zZeros

S-! are lower bounded by d¢m—1—1 and dcm—1, respectively. For the backward paths stemming

20

Figure 11: Trellis of the two encoders in Figure 10. .

from the state S0, at least m — [more steps are needed for the paths to reach the zero state,
which means at least weight d ;1 needs to be spent. For the backward paths stemming from
the state S™1, at least m more steps are needed for the paths to get to the zero state and at least
weight d.,,—1 needs to be spent. Therefore, dcm-1-1 and dgm—1 become lower bounds for the node
weights at states S~ and S~1.

Moving backward in the trellis is not convenient because it requires input from the other side of
the encoder. In fact, moving forward in the trellis generated by the reversed generator sequences of
the original generator sequences is equivalent to moving backward in the trellis of the original code.
Figure 13 shows the encoder with a reversed generator sequences of the encoder (a) in Figure 10.
Its trellis is shown in Figure 14. Let ujgg) = (101 00). The output of this “reversed” encoder is
Vio,) = (01 11 10 11 11), which is the same as the output of encoder (b) in Figure 10 whose trellis
moves backward. Therefore, instead of moving backward in the trellis, the generator sequences can
be reversed and the search can move forward in the corresponding trellis and the distance profile
(of the original generator sequences) can be used to effectively limit the part of the trellis that must
be explored.

21

Figure 12: The weight dg,c. path traversed backward

v

MDee
'd

- bl bO
oD
%

[v®

Figure 13: Encoder of a (2,1,2) time invariant code with a reversed generator sequences of encoder
(a) shown in Figure 10.

The FAST algorithm can now be described as follows. Suppose the distance spectrum of code with
generator sequences [g(1),g(?] and distance profile d is going to be determined. Let W,
denote the generator sequence for the reversed time invariant convolutional code. To calculate the
ith spectral component, start at state S = (10...0) with weight W = dfree + 1 — dco in the code
trellis generated by [g(1), §(®]. This weight will be reduced by the weight of the branches that the
search traverses when the code trellis is searched for nodes with both node weight and state equal
to zero. For each explored node, the column distance d¢m—i—1 Or dem-1 Will be used to lower
bound the weight of any path leading to a zero state. If the current weight is less than this bound,
a nonzero state with zero or negative weight will always by reached. Hence, it is only necessary to
extend a node if the node weight is larger than or equal to this bound.

If both successor nodes are achievable, then the “zero” branch is selected and the “one” branch
node (state S! and weight W) is pushed on a stack. Thus, the weight of this node will not be
calculated twice while moving back. The complete FAST algorithm is described as follows and
the flow chart is shown in Figure 15. Notice that w! is calculated using the reversed generator
sequences. '

F1 (Initialize) Set | — 1,ng < 0, W «—d —d.p, and S = [1, 0,---, 0).
F2 (Next nddes) Calculate S, S!, W0 and W!. If I < m, go to F6.

F3 (Return to zero) If W? =0, set ny_wo «— ng_wo + 1.

22

Figure 14: Trellis of the encoders in Figure 13.

F4 (Forward on “one” branch?) If wl< dem—1 0r W < dem, go to F5. Otherwise, select “one”
branch node and set | — 1. Go to F2. '

F5 (From stack?) If stack is empty, the algorithm terminates with the result in ng. Otherwise,
select the node from the stack and set I — 1. Go to F2.

F6 (Forward on “zero” branch?) If WO < dcm_i1-1, go to F4.

F7 (Save “one” branch node?) If W! >d, 1 and W > d, save the “one” branch node. In
any case, select ¢ ‘zero” branch node and set [— [+ 1. Go to F2.

The algorithm described above assumes the free distance is known. This algorithm can be modified
to find the free distance of a code when it is unknown as follows.

Initialize d to be sufficiently large, e.s., 1000. If d > d f;ee, the search will reach a zero state with a
positive node weight WP, i.e., dfr. is at most d — WP. Hence all node weights in the stack can be
reduced by WO (adjust stack) and the path counter reset to 1. When the search stops, d = dfree-
The modifications of F3 in the algorithm are described below and the modified flow chart is shown
in Figure 16.

F3 (Return to zero) If W = 0, set ng « ng+1; else if W > 0, set d — d—WOo W! — W1-W0,
W — W — W0 n, «— 1 and adjust stack.

3.3.2 Modification to FAST for Periodic Time Varying Codes

In order to make FAST work for periodic time varying codes, there are three necessary modifications.
First, since one periodic time varying encoder consists of P time invariant encoders (as shown in
Figure 1), all the generator sequences of the P time invariant encoders have to be reversed instead
of just one. Second, the distance profile used must be modified to be

d? = [dg’o, dg’l) v ad’c),m]

23

Stack empty ? Push S!
Push w!

! i
Pop W Wew! Wew?
Pop S S« s! s« s°
<1 1«1 I«]+1

! |]

Figure 15: Flow chart of the FAST algorithm.

= [n?ndg,o(J)’ I%indlc),l(j)’ e ’n?ndg,m(j)] i=4,2,..., P
Third, the time invariant code C; used at each time instant must be recorded.

Recall that for time invariant codes, moving forward in the trellis generated by the reversed code
is equivalent to moving backward in the trellis of the original code. This is also true for periodic
time varying codes. However, moving backward in the trellis of a periodic time varying code
C,C; ---Cp_1Cp is equivalent to moving forward in the trellis of CpCp_; - - - C2C). A counter j is
introduced in the algorithm to keep track of the current time invariant code.

Let w°(j) and w!(j) denote the branch weight generated by code C; with input “0” or “1”, respec-
tively. Note that in order to find all possible paths of weight d for periodic C1Cs - -- Cp_1Cp code,
FAST has to be run P times to check the P circular shifts, e.s., CoC3---CpCj. Steps F1 and F2

are modified as:

F1 (Initialize) Set i — 1,1 —1,ng <~ 0, W —d — dz,o, and S=[1, 0,---, 0).
F2 (Next nodes) Calculate j = (j+P—1) mod P, 8%, 8!, W0 = W—u0(j) and W! = W—-w!(j).

24

I« 1
ng<0
Wed-dg
S « (110...0)

¥

wWoew- w?
wew-uw'

Ry« Rg +1

Stack empty ? Push S'
Push W!

1
Pop W wew! wW<w?
Pop S s« s! s« s
l<1 1< 1 1< 1+1

! !]

Figure 16: Flow chart of the FAST algorithm when dree is unknown.

If l < m, go to F6.

Figure 17 shows the flow chart of the modified FAST algorithm for periodic time varying codes.
Figure 18 shows the flow chart of FAST for periodic time varying codes when d fre. is unknown.

3.3.3 Search Technique

Before running the code search program, the ensemble of periodic time varying codes needs to be
generated. First, the ensemble of (2,1,m) time invariant codes is generated. For (2,1,m) codes,
there are two generator sequences, g and g®. Each generator has m + 1 bits that can be “0” or
«1” . There are 2™+! possible values for each generator sequence. Therefore, there is a total 2x2m+!
possible codes. However, time invariant codes generated in this way may not have memory m. For
example, to generate a (2,1,2) code, the g = [4,2] = [110,010] is a valid combination, but no longer
a valid (2,1,2) code. Because the last position of g and g are all “0”. To solve this problem,
the following restriction is imposed on g1, The mod 2 adder has connections to the present input

25

j«1

I« 1

ng+0
W«d'dgo
S < (10..0)

|
1

jeG+p-1)mod p
woe w-w0()
wW'ew-wl()

Stack empty ? @ Push S'
Push W'
No Push Jj
Pop j !
Pop W Wew! wew°
Pop S S« §! s« s°

! i |

Figure 17: Flow chart of the modified FAST algorithm.

and to the oldest input, that is, g has “1’s” in the first and last positions. Therefore, there are
9™~1 possible value for g®. g is constructed without the above restriction and still has 2™+1
values. Next, periodic time varying codes are generated based on the time invariant code ensemble.
If the period is 2, then two time invariant code ensembles are chosen. The period 2 time varying
codes are generated by make all possible combinations of these two ensembles. To generate period
3 time varying codes, pick 3 time invariant code ensembles and do the combinations. For period P
codes, P time invariant code ensembles are used to make the combinations.

As can be seen from the above discussion, the number of possible codes increase exponentially with
the period. Eliminating the equivalent codes from the code ensemble becomes very important in
order to make the code search feasible. By studying periodic time varying codes, a criterion is
found to get rid of a large amount of codes.

First, consider a period 2 code in the order of C1Cy, then the code in the order C2C; will be
the same code as C1C5. Next, for a period 3 code in the order C;C2C3, the equivalent codes are
C,C3C; and C3C1C,. For the period 3 code, the last two codes are just circular shift of the first
one. From the discussion of the FAST algorithm, the algorithm itself checks all the circular shifts

26

i1

1= 1

nde—o
W~d~df,
§ « (10..0)

4
Je(j+P-1)mod P
WO W - wo(J)
w'-w-wl()

1«1 I+ 1 e+l

Figure 18: Flow chart of the modified FAST algorithm when dfree is unknown.

and these three codes have the same set of circular shifts. Hence, the last two are equivalent to
the first one. The same principle can be use to find equivalent codes for any period. That is, codes
that are generated by a circular shift right or left j times, j =0,..., P, are equivalent codes. Using
this method, about 25% codes can be eliminated.

As mentioned before, the FAST algorithm performs a progressive trellis search. If the search goes
into a path that can not gain any weight, it will keep going and never stop. This happens when a
catastrophic encoder is being searched. Since the generated code ensemble has a lot catastrophic
codes, these catastrophic codes should be eliminated before the search starts or the FAST algorithm
needs to be modified to detect the catastrophic code. A discussion on checking the catastrophic
condition will be presented in Chapter 4 based on a transition matrix analysis. This can be used
to eliminate the catastrophic encoders before the search starts. A trivial modification to FAST to
identify a catastrophic encoder is to add a counter to keep track of the path weight. If the weight
does not increase for a long time, then the search should stop.

27

3.3.4 Search Results

The search for (2,1,5, P) codes with P = 1, 2, 3, and 4 are exhaustive. The search for (2,1,5,5)
and (2,1,7,2) codes are not exhaustive because of the huge code ensemble. For these two codes,
codes are picked randomly from the overall ensemble of each code.

Code| Ci Co | dyree | Ndpree | 1/
1 | (367 255) | (323247) | 11 | 9 19
2 | (335 957) | (323 247) | 11 | 13/2 | 47/2
3 | (375 267) | (323 247) | 11 | 17/2 | 69/2

Table 6: (2,1,7,2) Codes With Free Distance 11.

In Table 6, all of the (2,1,7,2) codes with free distance 11 are listed. The C; and C; column
headings represent the two time invariant codes used in the period 2 time varying code. The
generators are written in an octal form. For each code, Ny, ,, and Iy, are also presented.

Code d=10] 11 | 12 | 13 | 14 15 16 17
. | Na| O 9 [33/2| 14| 45 | 160 | 363 | 1517/2
.| 0 38 | 81 | 91 | 338 | 1352 | 3312 | 15001/2
, |DNa| 0 [13/2] 16 | 26 | 54 | 255/2 | 639/2| 7o
T.| 0 [47/2| 83 | 165 | 375 | 2073/2 | 2857 | 7707
3 |DMa| O [17/2] 16 |20 | 56 | 136 |655/2| 704
T, | 0 [69/2| 84 | 138 |830/2| 1145 | 3002 | 7843
MED | Ve | 1 6 | 12 | 26 | 52 | 132 | 317 | 730
L,| 2 92 | 60 | 148 | 340 | 1008 | 2642 | 6748

Table 7: (2,1,7,2) Distance Spectrum. Notice that the first distance with nonzero spectrum is
dfree-

Table 7 lists the distance spectrum of all (2,1,7,2) codes with free distance 11, from d = 10 to
d = 17. Ny is the total number of codewords of weight d divided by period P and I is the total
information weight of all codewords of weight d divided by period P. The distance spectrum of the
(2,1,7) time invariant MFD code with g = [712,476] and free distance 10 are also listed in Table 7.
Compared with this time invariant MFD code, the three (2,1,7,2) codes are good in terms of free
distance. However, except for distance 10, the spectrum of the time invariant MFD code is better
(smaller) than all three periodic time varying codes.

Unfortunately, after an extensive search of (2,1, 5, P) codes with P = 1,2,3,4, and 5, a code with
dfree = 9 was not found. Since the ensemble of codes with period greater than 5 becomes too
large, these codes were not searched in this thesis. It is still possible that a (2,1, 5, P) periodic time
varying codes with dfr.. = 9 exists.

28

3.4 Simulation Results

In this section, simulation results for the three periodic time varying codes with dfr.e = 11 are
presented. These results are compared with the simulation results for the (2,1,7) time invariant
MFD code with g = [712,476] [11].

In these simulations, more than 100 bit errors are counted for each simulation run in order to reduce
the variance of the estimate. The bit error rate is plotted versus signal to noise ratio (E4/No) in
all the figures. Here, Ej, represents the energy per information bit and N, is the single sided
power spectral density of the white noise. Binary Phase Shift Keying (BPSK) signaling is used
over an additive white Gaussian noise(AWGN) channel and soft decisions are used in the decoder.
Figures 19, 20 and 21 show the simulation results of the three (2,1,7,2) periodic time varying
codes, respectively.

An analytical BER given by

1 (o o]
d=d)
free
where I, is the total number of nonzero information bits on all weight d paths and P; is the
probability that decoder selects an incorrect path with Hamming distance d from the correct path
is also shown in the figures. For the AWGN channel with BPSK modulation and a soft decision

decoder
Pi=Q (\/2dREb/No) | @

Q) = 7;:“ / % 8124,

In practice, the summation in (1) is truncated to a finite number of terms to obtain an approxima-
tion on P,. In Figures 19, 20 and 21, 16 terms are used. The 16 I terms used in Figure 19 are %{
76, 162, 182, 676, 2704, 6624, 15001, 41446, 112993, 293480, 744716, 1904866, 4920721, 12584340,
31989423, 81053650 }. The 16 I; terms used in Figure 20 are %{ 47, 166, 330, 750, 2073, 5714,
15414, 39728, 104476, 271160, 688352, 1759408, 4491857, 11429308, 28964105, 73067376 }. The
I; used in Figure 21 are %{ 69, 168, 276, 839, 2290, 6004, 15686, 41239, 109246, 281140, 719852,
1843439, 4688815, 11885233, 30098536, 76072907 }.

where Q(:) is defined as

The simulation results show that even though the periodic time varying convolutional codes have
larger free distance than the time invariant codes, they do not outperform the time invariant codes
for low and moderate E}/N,’s. From Figure 19, it can be seen that the two performance curves are
interweaved with each other. Hence, it is hard to say that the time invariant code is better than
the periodic time varying code or the time varying code is better than the time invariant code.
This situation is also true in Figures 20 and 21.

This can be explained by using the distance spectrum together with the union bound([12]. That
is, the performance is determined by the overall distance spectrum, not only by the free distance
term. The (2,1,7) time invariant code has dfree = 10 which is smaller than the periodic time
varying codes, but the Ng,, ., and the I, are fairly small, only 1 and 2. Comparing the other
distance spectrum terms with those of the periodic time varying codes, this time invariant code is

29

better for almost all distances. Therefore, in terms of distance spectrum, the three (2,1,7,2) codes
are denser than the time invariant code. The advantage the three (2,1,7,2) periodic time varying
convolutional codes gain from their larger free distance is offset by their relatively dense distance
spectrum.

T Ty
—¢— time varying

—— Approximation
-©- time invariant MFD

2.5 4 as 5
E,/N_(dB)

Figure 19: Simulation of (2,1,7,2) No.1.

30

~»— time varying
~— Approximation
-© time invariant MFD

-8 i 1 1 1 1 A i ! i

25
E/N,(dB)

Figure 20: Simulation of (2,1,7,2) No.2.

—»— time varying
—— Approximation
©-_time invariant MFD

2.5 35 4 45 5
E;/N,(dB)

Figure 21: Simulation of (2,1,7,2) No.3.

31

4 Time-Varying Turbo Codes

4.1 Introduction

Due to their near Shannon limit performance, turbo codes have attracted a great deal of attention
since their discovery in 1993 [13]. The BER performance of a turbo code may be divided into two
regions. The so-called waterfall region in which the BER drops rapidly and the error-floor region
where the BER drops at a slower rate. It is desirable to have turbo codes that have fast-dropping
waterfalls and low error-floors when they are decoded with the iterative decoding algorithm. How-
ever, it is challenging to design turbo codes that perform well in both regions due to conflicting
design constraints.

It is well-known that the error-floor is caused by the relatively small free distance of turbo codes
with pseudorandom interleavers [15, 16]. At moderate to high SNRs, a turbo code with a pseu-
dorandom interleaver will perform worse than conventional codes having large free distance. It is.
intuitive to use large memory convolutional component codes to build turbo codes having large free
distances and hence lower error-floors. Unfortunately, the iterative decoding algorithm for turbo
codes generally does not converge for component codes with memory greater than 4 [19] and thus
the performance in the waterfall region is significantly compromised.

Although challenging, work has been done to design turbo codes that excel in both regions. One
example of this is the use of asymmetric turbo codes [17]. That is, turbo codes that have one “weak”
component code which performs well in the waterfall region and the other “strong” which gives
a large free distance. An asymmetric turbo code consisting of the component code of the Berrou
turbo code and a recursive systematic code with a primitive feedback polynomial was constructed
in [17]. It turns out that this code is inferior to the Berrou turbo code in the waterfall region, but
has a much lower error-floor. The simulated BER performance of this code in shown in Figure 22.

Another encoding scheme that combines “weak” and “strong” together is to use the Big-Numerator
Little-Denominator (BN-LD) convolutional codes discovered by Massey et al. [14]. In [14], the turbo
code constructed from a memory 8 BN-LD convolutional code with recursive systematic generator
matrix

Gpn-Lp(D) = |1,

1+D+ D"+ D8
1+ D + D2

is shown to have slightly better performance than the Berrou turbo code does in both regions.
Note that Gpn—_rp(D) has a large-degree feedforward polynomial and a small-degree feedback
polynomial. It is conjectured that this feature enables the turbo code to perform well in all regions.
Simulation results of the original Berrou turbo code and the memory 8 BN-LD turbo code are
shown in Figure 22. As is indicated by the figure, the memory 8 BN-LD code outperforms the
Berrou code at all SNRs.

As an example to illustrate the tradeoff in performance between the two regions, the BER perfor-
mance of a turbo code based on memory 6 BN-LD component codes with generator matrix

1+D+ D%+ DS
1+D+ D2

Gpn-Lp(D) = |1,

32

10 i 3—-—o Berrou turbo code - _
E—& Memory 8 BN-LD turbo code
&—© Memory 6 BN-LD turbo code
fan {A—~A Asymmetric turbo code

- I
-03 -02 -01 00 0.1 0.2 0.3 0
Eb/No (dB)

:hLJ_

10

0.5

Figure 22: Simulated results of the Berrou turbo code, the memory 8 BN-LD turbo code, and the
memory 6 BN-LD turbo code with 18 decoding iterations. All codes are rate 1 /3 with random
interleaver of length 16384.

is also plotted in Figure 22. Due to its smaller memory, the decoding of the turbo code based on
this code is less complex than that of the memory 8 BN-LD turbo code and, since it is “weaker”
than the memory 8 BN-LD code, the turbo code constructed is expected to perform better in the
waterfall region. The EXIT analysis described in [19] provides a useful tool for predicting the BER
performance of turbo codes in the waterfall region. EXIT charts for the component codes of the
Berrou code, the memory 8 BN-LD code and the memory 6 BN-LD code are shown in Figures 23,
24, and 25, respectively. The EXIT charts show that at SNRs greater than -0.3 dB the iterative
decoding algorithm converges for both the Berrou and the memory 8 BN-LD codes, but the memory
6 BN-LD turbo code converges for SNRs greater than -0.4 dB. As shown in Figure 22, the BER
performance of the memory 6 BN-LD turbo code is in fact better in the waterfall region than both
the Berrou and memory 8 BN-LD turbo codes, but its error-floor is the worst among the three.

Thus, by using a weaker component code, the performance in the waterfall region improves and the
decoding complexity decreases. However, the performance in the error-floor regions is worsened,
presumably due to a decreased free distance. The question remains as to whether or not the waterfall
performance of the memory 6 BN-LD code can be retained while improving its performance in the
error-floor region. In this paper, time-varying component codes will be used to address this.

33

T T T T T T
1 L}] 1 l U
09 |-Interleaverlength = 16384
) L}] [+ 1)
L} L} ') 4 L}
08 |---f-~-q---4--------po--i
H \ i Co
OT TR
06 f---t---q---q------ -
:) ' : v/
I R ARRRAEEL) shiet
I R A]
.] [G—HBSNR =0.0dB
03 F---toucid 7 __|4—<dSNR=-03dB |_
g | o i ¥—VSNR =-0.4dB
0.2 74 : _.[b—>sSNR=—05d8 |_
’ : : 1]] 1
[RY o S e ’ B
] 1 i ¢]
H : : H H H H H H
0'oo‘o 01 02 03 04 05 06 07 08 09 10

1A

Figure 23: EXIT chart of the Berrou turbo code with interleaver of length 16384.

1-0 T : T : T T T T
i 5 + U 1]
09 | -Interleaverilength =L 16384 ._ oz
1} 1} 1] b 1} L} 1 g 1
08 S S R A TR N SO V7 Vi N
: P
07 f--- S R S
L} 1]
)]
06 f---t---d-a-d 3N (2L EEEE dom e
v/ []
wos | oA -- SRR R S
1 1
af 1 1
04 ---y--- 9 @—BSNR=00dB |
03 | 7 i G@—<qSNR=—03dB |_
- o V—V SNR = 0.4 dB
0.2 }--m - A T R W D—SNR = -0.5dB |_
B 1]]]
o.‘ v --TI"-ﬂ‘-"l—"'l"_';"‘"‘--"1"":'"'
1 1] 1] 1 1 1 L}
000 N S S SN T S
“00 01 02 03 04 05 06 07 08 09 10

Figure 24: EXIT chart of the memdry 8 BN-LD turbo code with interleaver of length 16384.
4.2 Time-varying Component codes

A time-varying convolutional code [20] is a convolutional code generated by a convolutional en-
coder whose generator matrix changes with time. Denote the generator matrix of a time-varying
convolutional encoder at time t as G¢(D). A time-varying convolutional encoder is said to be pe-
riodic with period T if G4(D) = Giyr(D) for all t = 0,1,---. Since time-invariant convolutional
codes can be seen as generated by periodic time-varying convolutional encoders with period 1, they
are a subset of time-varying convolutional codes. It is conjectured that the use of time-varying
component codes, which can consist of combinations of weak and strong time-invariant codes, will
enable the construction of turbo codes with better performance in both regions.

The first time-varying component code considered is a memory 6, period 2, rate 1 /2 time-varying
convolutional code, denoted as PTVCC]1, and described in Table 8. Obviously, PTVCCI is con-

34

T T T T
)
'

5,1(53:13z1_§,._~

s | Inferleaverilength =

A |
T T [@—8SNR=00dB |
__l4—<dSNR=-03dB |_
'V—VSNR = -0.4dB
__|p—>SNR=-05dB |_

--t---
|

i

[1 ' +
ey e ——

1 ' ' 1

1 ' [l '

000) 2 . L h h L H L
00 0t 02 03 04 05 06 07 08 09 1.0

1A

Figure 25: EXIT chart of the memory 6 BN-LD turbo code with interleaver of length 16384.

structed according to the same principles as in [14]. That is, it is a BN-LD code. The EXIT analysis
of this code, shown in Figure 26, indicates that the iterative decoder would start to converge for
SNRs greater than -0.5 dB and would converge relatively fast for SNRs greater than -0.4 dB. De-
note the turbo code based on PTVCCI1 with a pseudorandom interleaver as TC1. The simulation
results for TC1 are plotted in Figure 27. The Figure shows that the BER performance of TCl1 is
about 0.1 dB better than that of the memory 8 BN-LD turbo code in the waterfall region which is
consistent with the EXIT analysis. It also performs better than the memory 6 BN-LD turbo code
in both the waterfall and error-floor regions. However, the simulation also shows that T'C1 still
has a much higher error-floor, suggesting a smaller free distance, than both the memory 8 BN-LD
turbo code and the Berrou turbo code.

GO(D) Gl(D)

PTVCOL | [1, BB | [1, 5]

' 1+D+D°+ DS l:I:D_z'tQ;_'l'_I—";iQ;
PTVOC? | [1, LD | (1 i]

Table 8: Generator matrices of the time-varying component codes used to build turbo codes.

In order to improve on the performance of the TC1 in the error-floor region, a second period 2
time-varying component code based on memory 6 convolutional codes is constructed. This code,
denoted by TC2, consists of a BN-LD code and a traditional high free distance convolutional code.
The parameters of this code is given in Table 8. The idea behind this code is that it would combine
the “weak” aspects of the BN-LD code and the strong aspects of the high free distance code. The
EXIT analysis for TC2 is shown in Figure 28 and indicates that the iterative decoder will converge
for SNRs above -0.4 dB. The performance of the resulting turbo code, denoted by TC2, based on
TC2 is shown in Figure 27. As expected from the EXIT analysis the performance in the waterfall
region is 0.1 dB worse than TC2. However, the performance in the error-floor region is significantly

35

improved.

As mentioned in the introduction, the most common method for improving performance in the
error-floor region is to use spread interleavers [18]. Figure 29 shows the performance of all five
turbo codes considered in this paper with the same spread interleaver with a spreading factor of
20. Though the spread interleaver improves the error-floor of the all the turbo codes, the relative
performance remains unchanged. It is also noted that the error floor of both the turbo code with
memory 8 BN-LD component code and the turbo code with PTVCC2 as component code disappear,
but the turbo code with PTVCC2 as component code achieves this with a lower decoding complexity
due to decreased memory.

4.3 Conclusion

It is shown in this paper that good turbo codes can be constructed using time-varying convolutional
codes. A turbo code based on a simple period 2, memory 6, time-varying component code was shown
to outperform the memory 8 BN-LD code of [14] with less decoding complexity. By combining
the weak properties of BN-LD codes with the strong properties of traditional high free distance
convolutional codes, time-varying codes offer the possibility of improvement in both the waterfall
and error-floor regions. Work is continuing on finding turbo codes based on time-varying component
codes that show this. ‘ :

1.0 T T T T T T T
1 1 1 3 ¥ | [
o9 |-Interleaverilength = 16384_,___g]
1] 1 1] .
0.8 f---tomodoood ot
]]
I A S S R
¥ |
' |
0.6 [--=t---domodoeoo-
| [}
W 05 f---tmmmt-mmmim -
1 i 1]
1 i 1]
04 F---{---1--—gf ¥~ Fo- -
03 L 7 11 __|4—<dSNR=-040B |
- . "1 |v—VSNR=-05dB
0.2 . A . L ___L__|D—PSNR=-06dB |_
* I]] [[1
1 [I] 1]

o A B R R EEE e REEE
0.1 1 1] 1 i :
0.0e A S S S S
00 01 02 03 04 05 06 07 08 09 1.0

1A

Figure 26: EXIT chart of the TC1 with interleaver of length 16384.

36

~1

10

~2

10

BER

3--EHMemory 8
R lo - -©Memory 6
A—ATCH

BN-LD |
BN-LD [~

<q4 qTC2

-0.30 -0.20 -0.10 0.00 0.10 020 030

Eb/No (dB)

Figure 27: Simulated BER performance of the Berrou turbo code, the memory 8 BN-LD turbo
code, the memory 6 BN-LD turbo code, TC1, and TC2 with 18 decoding iterations. All codes are
rate 1/3 with random interleaver of length 16384.

1.0 T T T Y T T T

09 __Lnt@erjeéyergleng:,rh_;me;sz;_*

08 | -ttt B L

IR RS 7 240
W 05

I 1

i I

| p i
F-——t-—- s Bt Redieating g~~~ t+t---

L} " 1

[} {

] 1

B—aSNR =
4 <SNR=-0.3dB |_
V—¥VSNR = -0.4 dB
-[>—>SNR--05dB |

0.0 dB

Fr~ """ ~"~"r——733==-r

i | t
! i 1
ISt Shadsatie S |
| 1 i
! I t
1 i i

1A

00 01 02 03 04 05 06 07 08 09 1.0

Figure 28: EXIT chart of TC2 with interleaver of length 16384.

37

10”7
e Setiter At Mt Nttt s O --© Berrou turbo code
SR S 3 - - 8Memory 8 BN-LD |~
. ' 11 - - © Memory 6 BN-LD |
10~ :
10° : g FEE L e
o ot it WO\ VARES TR SRR KA St v sobuets Hutsant Hosoos
T S S S O S N O A e Tt e S
o0
T L T e e ST ey

)

030 -0.20 -0.10 000 010 020 030 040 050
Eb/No (dB)

Figure 29: Simulated BER performance of the Berrou turbo code, the memory 8 BN-LD turbo
code, the memory 6 BN-LD turbo code, TC1, and TC2 with 18 decoding iterations. All codes are
rate 1/3 with spread interleaver of length 16384 and spreading factor 20.

38

5 Joint Source-Channel Coding

5.1 Introduction

This report aims at comparing different joint source and channel coding techniques in the literature.
Since a joint source and channel coding system performs both source coding and channel coding,
the performance evaluation of such a system must be based on how well it compresses the data
given a distortion constraint as well as how successfully it combats against the channel errors. In
this study, 8-bit, monochrome images are taken as the source and are transmitted over a binary
symmetric channel (BSC). Therefore, the performance of the system is evaluated using the following

three measures:

1. The overall rate of the system (taking both the rate reduction due to source coding and
rate increase due to channel coding into consideration).

9. The distortion after joint source and channel coding. To evaluate the distortion of the
images, the signal-to-noise ratio (SNR) measure is used.

3. Probability of channel error of the BSC.

Given these three factors, the goal of a joint source and channel coding system is to minimize the
distortion (therefore maximize the SNR) for a given rate and probability of channel error, or to
minimize the overall rate for a given distortion and channel error probability.

The report is organized as follows: In Section 2, the motivation behind joint source and channel
coding is explained from a somewhat information theoretical point of view. In Section 3, a classi-
fication for different approaches to joint source and channel coding is made, which covers a brief
discussion of the significant contributions to the area. In Section 4, a joint source and channel
coding scheme that exploits the residual redundancy of subband coded images is presented. In
" Section 5, the performance of a wavelet based, progressive coding scheme is investigated for noisy
channels. In Section 6, the performance of channel-optimized vector quantization is investigated.

5.2 The Idea of Joint Source and Channel Coding

In classical communication systems, the design of the source coder and channel coder have been
made separately. This is due to the fact that the data compression does not depend on the
channel and error control coding does not depend on the source distribution [22]. Shannon, in his
original paper [21] proved that the two-stage method is as good as any other method of transmitting
information over a noisy channel. This result, known as the separation theorem, has some important
practical implications. It implies that we can consider the design of a communication system as
a combination of two parts, source coding and channel coding. We can design source codes for
the most efficient representation of the data. We can separately and independently design channel
codes appropriate for the channel. The combination will be as efficient as anything we could design
by considering both problems together [22].

39

However, as we try to operate under more and more restrictive conditions, the separation of source
and channel coders becomes impractical to implement. It has been shown that the separation
does not hold for all channels [23]. Also, there are examples of multiuser channels, which are the
channel models for today’s wireless communication systems, where the decomposition breaks down.
Moreover, even for the channels where the separation holds, the design of an optimal source and
channel coder pair is needed which is usually impractical to implement.

Another reason for why the separation theorem does not hold in practice is that it assumes that
the source encoder outputs an independent sequence for optimal channel coding. However, since
the source encoders of practical interest are not optimal, their outputs contain redundancy. Also,
the channel coders are assumed to be optimal in the sense that they produce the source encoder
output at the source decoder input with negligible distortion which is an unrealistic assumption
due to channel errors that remain uncorrected. Therefore, the non-optimality of source and channel
coders causes the separation axiom to breakdown.

All the weaknesses of the separation theorem mentioned above motivated researchers to find more
efficient ways of doing source and channel coding. Various approaches to the solution of the problem
have been developed and are usually grouped under the general heading of joint source and channel
coding. The next section briefly summarizes these approaches.

5.3 Background

The joint source and channel coding schemes in the literature can be classified into four categories.

The first class of these schemes is the joint source and channel coding schemes, named as such since
the source and channel coding operations are truly integrated into one coder structure. The most
important examples of this category include the work of Ancheta [24] and Massey [25], the work
of Dunham and Gray [26] and Ayanoglu and Gray [27], who investigated the design of joint source
and channel trellis coders. These studies are rather theoretical works and very hard to implement
in practice, if not impossible.

The second class of joint source and channel coding schemes are named as concatenated source
and channel coding schemes. In this type of coders, known source coders and known channel
coders are cascaded and an optimal rate allocation between the source coder and the channel
coder is performed for maximum system performance. The work in this category [28]-[32] uses
known source coding techniques such as different forms of (i.e., two-dimensional, backward adaptive,
embedded, etc.) differential pulse code modulation (DPCM), discrete cosine transform (DCT), and
tree encoding, and concatenates them with different forms of (i.e., short constraint lengthened,
self-orthogonal, punctured, etc.) convolutional codes, and Hamming codes. The important issue
here is to find the optimal allocation of the fixed rate between the source coder and the channel
coder as well as their cooperation.

In a third class, unequal error protection source and channel coders are considered. This type

of source and channel coding schemes make use of the fact that channel errors in different bits
cause different effects on the final reconstruction. Depending on the source coding scheme, errors

40

in some of the bits cause more distortion than others. Therefore, the bits can be classified as
important and unimportant bits. The main idea behind unequal error protection is to heavily
protect important bits at the expense of poor protection of the unimportant bits, resulting in better
system performance. Work in this field [33]-[35] includes different source coding schemes such as
pulse code modulation (PCM), subband coding as well as different error protection methods.

The last category in the classification of the joint source and channel coding schemes include the
constrained joint source and channel coders. The source coders in this class are modified to account
for the presence of a noisy channel. In other words, the source coders are optimized subject to a
noisy channel constraint [36]-[38]. One subset of constrained joint source and channel coders are
those coders that make use of the knowledge of source coding properties to combat channel errors.
These studies [39)-[48] generally utilize the statistical properties of the source encoder output such
as the residual redundancy and try to detect and/or correct channel errors.

5.4 Joint Source and Channel Coding of Subband Coded Images Using Residual
Redundancy

In this section, we investigate the performance of a joint source and channel coding system that
exploits the residual redundancy at the source encoder output to detect and correct channel errors.
The source coder is a concatenation of a subband coder, a DPCM coder and a Huffman coder. For
channel coding, a non-binary convolution encoder is proposed which is optionally used to perform
error correction. The channel output is decoded using a variable-length list Viterbi decoder and
the source decoders. The overall system diagram is shown in Figure 30.

Encoder All:;ion DPCM Encoderi—+# ;g;ier HEncodu' BSC
Subband DPCM NCE Huffman Variabie-Length
Decoder Decoder Decoder Decoder [*] List Viterbi

Figure 30: System diagram of a joint source-channel coding scheme.

Natural sources such as images usually have low pass characteristics. Therefore, most of the
information in these sources tend to be in the low frequency bands. Subband coding is a source
coding scheme that decomposes the source into its subbands, and codes each subband according to
its information content. One of the most commonly used ways of looking at the information content
of a subband is to calculate its energy. A subband that carries higher energy than other subbands
has greater information content. Therefore, a reasonable way of coding the subbands of an image
would be to allocate more bits to the subbands with higher energy and allocate fewer bits to the
subbands with lower energy. The problem of allocating bits to subbands, namely bit allocation, is
one of the challenging problems in source coding and a number of different bit allocation schemes
have been proposed in the literature. These schemes aim at minimizing the overall distortion

41

subject to a given rate constraint.

The subband decomposition for images is often carried out in the following manner: First, the rows
of the image are filtered. Usually, two types of decomposition filters are used: low-pass and high-
pass. After filtering the rows using low-pass and high-pass filters, we end up with two subbands
of the image: low band and high band. Next, the outputs of the filters are subsampled. The
justification for the subsampling is the Nyquist rule which states that twice as many samples per
second as the range of frequencies suffice for perfect reconstruction. Since after filtering, the range
of frequencies for each subband is halved as compared to the original image, we need only half of
the samples at the output of each filter. Therefore, a 2:1 subsampling can be done without loss of

any information.

After low and high pass filtering of the rows and subsampling, exactly the same operations are
performed on the columns for both low and high bands. The two-stage filtering operation on the
rows and columns is equivalent to a two-dimensional filtering. After filtering and decimation, four
subbands or subimages are obtained. The subimage obtained by low-pass filtering the rows and
columns is called the low-low (LL) image. The subimage obtained by low-pass filtering the rows
and high-pass filtering the columns is called the low-high (LH) image. The subimage obtained by
high-pass filtering the rows and low-pass filtering the columns is called the high-low (HL) image.
Finally, the subimage obtained by high-pass filtering the rows and columns is called the high-high
(HH) image. Since subsampling is performed after each filtering operation, an image of dimension
N x N results in four subimages of dimensions % X % The subband coding procedure has been

depicted in Figure 31.

Figure 31: System diagram of a subband coding scheme.

One of the most important design problems in subband coding is the filter implementation. In the
literature, there are a number of filter pairs (low-pass and high-pass) proposed for subband coding.
These filters are often realized as causal, finite impulse response (FIR) filters. Another type of filter
often used in subband coding perform wavelet decomposition in terms of FIR filters.

In the proposed scheme, after the subband decomposition and the decision for allocating the number
of bits to each subimage has been made, the subimages are encoded using DPCM which is a
differential coding scheme where the difference values to be quantized and coded are minimized
using linear prediction. Next, the output of the DPCM encoder is further encoded using Huffman

42

coding. Huffman coding is a lossless variable-length coding scheme, therefore the output of our
concatenated source coder has variable-length codewords.

The test image used throughout the simulations is the Sena image shown in Figure 32. The subband
coder uses 9/7-tap FIR filters that employ wavelet decomposition [58]. The image edges have been
reflected exploiting the symmetric structure of the filter coefficients to reduce the distortion. The
DPCM coder used in this study has a three-bit uniform quantizer and a third order predictor
that predicts the value of a subband coefficient using three neighboring coefficients. The predictor
coefficients are calculated using the autocorrelation function of the image to minimize the mean
square error. This process is a modification of the well-known Wiener-Hopf equations. The DPCM
coder is used to code only the LL subimage since the rate allocation schemes used in the study
allocates all three bits to the low-low subband. The codebook of the Huffman coder is formed using
a training image. Therefore, it is assumed to be known at both the encoder and the decoder.

Figure 32: Testv imé.ge used for simulation results.

At the output of the channel, a list Viterbi decoder with branch metric that accounts for both the
residual structure in the source encoder output as well as the channel probability of error is used.
More precisely, if we denote the output of the source encoder by sequence {v:} and the channel
output as {#;}, the branch metric, L is computed as

L = log P(y:lyi-1) + log P(iily:)- (3)

The first term in (3) is the transition probability from symbol y;_; to y;. If the source encoder was
a perfect coder, then it would produce uncorrelated symbols. However, since it is not ideal, there
is still some structure in the output sequence. This is often expressed as residual redundancy. This
redundancy helps the decoder correct channel errors. The second term accounts for the channel
effect and is subject to a practical scaling factor. As the channel probability of error gets smaller,
the second term dominates the first term which makes sense since in small error probabilities, it is
less likely that a bit will be in error. In a noisier channel, however, the first term dominates the
second term which basically means that the bits are more likely to be in error. Therefore, the first
term that is a measure of the residual redundancy at the source encoder output should prevail the
second term. The source statistics that make up the first term in the branch metric is calculated
using a training image that has similar statistical characteristics with the image transmitted. The
second metric is calculated assuming that the channel is a BSC with known transition probability.

43

The list Viterbi decoder generates a list of B globally best candidate sequences after a trellis
search. Through the trellis, for each node, B branches with minimum costs survive out of the
N x B candidates, where N is the number of states in the trellis. Depending on the length of the
list (B) and the number of states (N), the algorithm can be substantially complex in terms of the
number of computations required. It should also be noted that, since the source encoder outputs
variable length symbols (due to the Huffman encoder), the list Viterbi decoder incorporates them
in the trellis in the form of variable length states. Therefore, different paths entering a state use
up a different number of bits from the received sequence.

The image to be transmitted is encoded on a row-by-row basis, and the encoded rows are packetized
and transmitted over the BSC. The packets also carry the number of bits that they convey. This
information is carried in the header and is assumed to be error-free. Among the paths in the list,
the path with the smallest cost and correct number of bits is chosen and decoded as the received
sequence. If there is no path in the list with correct number of bits, the one with the smallest cost

is chosen.

This system has been simulated for a BSC with transition probabilities ranging from p = 105 to
p = 10~1. The performance is evaluated using the peak signal-to-noise ratio (PSNR) as the quality

measure. The PSNR is defined as

PSNR = 1010810 553 2 4 P 4)

where u; is the actual pixel value, 1i; is the reconstructed pixel value, and u, is the maximum pixel
value, which is 255.

The simulation results have been shown in Figure 33 (green curve). The PSNR value of the
reconstructed image starts at 34.879 dB and decreases gracefully as the channel gets noisier. The
rate of the overall system is 0.463 bpp. It should be noted that the 3-bit DPCM coder encodes only
the LL subimage which gives a rate of 0.75 bpp. The Huffman encoder further reduces this rate to
0.463 bpp. Considering the fact that the input to the Huffman encoder is already a source coded
_data, a lossless compression of ratio 0.75/0.463 = 1.62 is substantial. The reason for this relatively
high compression ratio is due to the uniform structure of the quantizer used in the DPCM coder.

Next, to make the performance of the proposed system more robust to channel errors, some amount
of redundancy is added to the source coder. A nonbinary convolutional encoder (NCE) [44] is used
for this purpose. The structure of the rate 1/2 NCE is shown in Figure 34.

The input to the NCE Z, is the output of the 3-bit DPCM encoder, with is selected from the
alphabet {0,1,2,.. — 1}, where N = 23 = 8. As the output of the rate 1/2 NCE i 1s related
to the input by the relatlon Yn = Nzp_1 + z,,, the output alphabet becomes {0,1,2,. -1},
where M = N2 = 64 as follows from the input-output relation given above. This NCE outputs 6
bits for every 3 bits input to it. Therefore, it is a rate 1/2 coder. Given any 6-bit output symbol
at time n — 1, the NCE outputs a limited number of symbols from its output alphabet at time n.
Specifically, given a value for yn_1, y» can take on a value from {aN,aN+1,aN+2,..., aN+N-1}.
For example, if at time n — 1, the output is 19 (010011), the output of the NCE at time n can
only be one of the following symbols: {24,25,26,27,28,29,30,31}. Notice that while the encoder
output alphabet size is of size N2, at any given instant the encoder can only emit one of N different
symbols. This property of the rate 1/2 NCE gives the channel decoder an improved ability to detect

' 44

Performance of the Proposed
40 T T T T

System with and without NCE
T T T K

35

30

RSNR (dB)
n
(41}

8

& 9/7 Daubechies + 3-bit DPCM + Huffman, R=0.463 bpp
% §/7 Daubechies + 3-bit DPCM + Huffman + 1/2 NCE, R=0.818 bpp

5 . M IS R i M M M i
10° 107 107 10
Channel Probability of Error

Figure 33: Performance comparison of a concatenated joint source-channel coding schemes with
and without a nonbinary convolutional code.

and correct channel errors at the expense of increased rate. It should also be noted that the NCE
is designed to ensure that its input alphabet matches the output alphabet of the DPCM encoder.
This helps the residual structure in the DPCM output to be maintained for channel coding.

The results for the proposed system with the rate 1/2 NCE is shown in Figure 33 (red curve). It
is clear that the PSNR values remain almost constant until p = 102. The use of the NCE makes
the system more robust to channel errors at the cost of increased rate as compared to the system
without the NCE. It should be noted, however, that using the NCE increases the number of states
in the decoding trellis substantially (depending on the rate) which yields a more complex system
in terms of the number of computations required. The rate of the overall system is 0.818 bpp.
The rate of the system without the NCE was 0.463 bpp. It might be expected that using a rate
1/2 NCE would double the rate, i.e. increase to 2 X 0.463 = 0.926. However, since the Huffman
encoder is at the output of the NCE, it helps to reduce this rate to 0.818 bpp, that corresponds to
a compression ratio of 1.13.

5.4.1 Comparison of the Joint System to a Separated System

The performance of the previous joint source and channel coding system using the rate 1/2 NCE
was compared to the traditional separated system shown in Figure 35. The convolutional code used
was the maximum free distance rate 1/2 memory 6 code. The average rate of the separated system

45

was 0.95 bpp. The simulated channel was the additive white Gaussian noise (AWGN) channel using
both hard and soft decisions at the decoders. The channel is assumed to be power constrained so in
order to compare the systems with different rates the performances are plotted versus Ey /Np where
E,, is the energy per pixel. The energy of each transmitted bit, Ey, is determined by the rate of the
system, R (bpp) according to E}, = E,/R. Figure 36 shows the simulation results. The simulated
performances show that the separated system outperforms the joint system except at small SNR.

5.5 Progressive Image Transmission over Noisy Channels

In this section, we will present one of the novel source coding schemes in the literature, and
investigate its performance over noisy channels.

Set Partitioning In Hierarchical Trees (SPIHT) [57] is one of today’s most successful and practical
image coders for the noiseless channel. It has been shown to outperform almost any other existing
source coding scheme. It is computationally simple and has a progressive mode of transmission,
which means that as more bits are transmitted, better quality reconstructed images can be produced
at the receiver. The receiver need not wait for all bits to arrive before decoding, it refines the
decoded image with the arrival of each bit of information.

SPIHT is a wavelet-based coding technique, it uses the 9/7-tap FIR filters that were discussed
in the previous section. However, the depth of decomposition is different, it decomposes the low-
low subimages using the fact that most of an image’s energy is concentrated in the low frequency
components. We can view the output of a subband coder as in Figure 37.

Since the energy is concentrated in the low frequency components, we can keep decomposing the low-
low subimages to perform finer coding on those components. In Figure 38(a), the low-low subimage '
- has further been decomposed to obtain 2-level decomposition. In this case, the decomposition
results in 7 subbands. For an image of dimension N x N, the four subbands of the low-low
subimage, namely the LLLL, LLLH, LLHL, and LLHH subbands will have dimensions of § x 4§
since subsampling is employed after each filtering operation. The remaining low-high, high-low
and high-high subbands will have dimensions of —122 X g— In Figure 38(b), the image has been
decomposed five times, to result in 16 subbands. The four subbands in the highest level of the

Figure 34: Rate 1/2 Nonbinary convolutional encoder.

46

Source o Subband » DPCM »| Huffman » Conv.
Encoder Encoder Encoder Encoder
Channel
Sink Subband | DPCM |g Huffman Viterbi |
Decoder Decoder Decoder Decoder

Figure 35: Block diagram of a separated system.

A e—é—?wfé e
T
. :) L - : :
: 4.'@/ B - - -
R R L .
-6~ Separated (soft)
-8~ Separated (hard)
-© Joint (soft)
: : . . : : ~g- Joint (hard)
5 1 L] 1 1 1 I I
-3 ~2 -1 0 1 2 3 4 5 6
Epan (dB)

Figure 36: Performance comparison of joint and separated systems.

pyramid have dimensions of % X % This form of image decomposition is often referred to as
hierarchical subband transformation or pyramid transformation and the lower bands correspond to
the higher levels of the pyramid.

To understand the motivation under progressive image transmission, let’s define the following nota-
tion: Let p; ; be the pixel value of the image at coordinate (4, 7). Let 2(-) be the unitary hierarchical
transformation defined as ¢ = (p), where the two-dimensional array c has the same dimensions
of p. c;; is the transform coefficient at coordinate (i,j). In a progressive transmission scheme,
the decoder initially sets the reconstruction vector & to zero and updates its components according
to the coded message. After receiving the value of some coefficients, the decoder can obtain a
reconstructed image using the inverse transform: p = Q1@ .

Progressive transmission can be viewed as a way of transmitting the most important information
(which yields the largest distortion reduction) first. If we use the mean squared-error (MSE) as the

47

LL
NN
L) N
LH
. LL LH
(NN — _—‘[LLlLHIHL]HHJ
ha— - oy F T T i lf
HL HL | HH
NN
H
HH
NN

Figure 37: 1-level Decomposition used in SPIHT.

LLLL LLLH |
LH
LLHL LLHH
HL HH
2-Jevel Decomposition 5-level Decomposition

Figure 38: Two level and five level decompositions used in SPIHT.

distortion measure,)
D — % _.I.Ig:_ﬁ_lﬁ__l_E:E:)2 5
mse(p p) - N - N (pt,J pt,]) 9 ()
i J

we can use the property that the Euclidean norm is invariant to the unitary transformation. There-
fore,

Drnse(p — B) = Drnsele ~ &) = 3 3 (ess = &) ©
i g

If the exact value of the transform coefficient c;; is sent to the decoder, then the MSE decreases
by |ei j|2/N. This means that the coefficients with larger magnitude should be transmitted first
because they have a larger content of information. It follows that, the value of |ei,j] can be ranked
according to its binary representation, and the most significant bits are transmitted first. In this
case, the ordering information should also be transmitted which will increase the rate. However,
it is shown [57] that this method of transmitting the information is very efficient despite the fact
that a large fraction of the bit-budget is spent in the transmission of ordering information.

The SPIHT algorithm removes the need for the ordering information by implicitly transmitting
it. It is based on the fact that the execution path of any algorithm is defined by the results of

48

the comparisons on its branching points. Therefore, if the encoder and the decoder have the same
sorting algorithm, then the decoder can duplicate the encoder’s execution path if it receives the
magnitude comparisons, and the ordering information can be recovered from the execution path.

To reduce the number of magnitude comparisons, a set partitioning rule is defined that uses an
expected ordering in the hierarchy defined by the subband pyramid. The objective is to create new
partitions such that subsets expected to be insignificant contain a large number of elements, and
subsets expected to be significant contain only one element.

For this purpose the following function is defined:

_f 1, maxgjjer{lel} 227
5n(T) = { 0, otherwise (7)

to indicate the significance of a set of coordinates I. The significance of a single pixel value is
denoted by Sy (3, 7).

The hierarchical relationship between the coefficients in the subband pyramid is defined by a tree
structure, called the spatial orientation tree. The tree is formed in such a way that each node has
either no offspring or four offsprings, which always form a group of 2 x 2 adjacent coefficients. The
coefficients in the highest level of the pyramid are the tree roots and are also grouped in 2 x 2
adjacent coefficients. However, their offspring branching rule is different, and in each group one of
them has no descendants. For a 2-level decomposition (or 2-level pyramid), the structure of the
spatial orientation tree is depicted in Figure 39.

ol
N

Figure 39: Spatial orientation tree used in SPIHT.

The following sets of coordinates are used to present the new coding method:

e O(i,): set of coordinates of all offsprings of node (i, j);

49

e D(i,7): set of coordinates of all descendants of the node (3, j);

e ‘H: set of coordinates of all spatial orientation tree roots (nodes in the highest pyramid level);

e L(i,j) = D(i,j) — O J)

In order to implicitly transmit the ordering information, a set partitioning rule is defined according
to the following principles:

1. the initial partition is formed with the sets {(,4)} and D(s,§) for all (i,7) € H;

2. if D(s, j) is significant then it is partitioned into L(3,) plus the four single-element sets with
(k,1) € O3, 5)-

3. if L(i, j) is significant then it is partitioned into the four sets D(k,), with (k, 1) € O, 7).

The SPIHT algorithm works according to the significance of the sets that it partitions as well as
the significance of single coordinates. For this purpose, three lists are used: list of insignificant
sets (LIS), list of insignificant pirels (LIP), and list of significant pizels (LSP). LIP and LSP store
individual pixel coordinates (%,), on the other hand the LIS stores the sets D(i,) or L(i,7).

The SPIHT algorithm, using the concepts given above, is as follows:

1. Initialization: output n = |logy(max; ;){|c: ;|})]; set the LSP as an empty list, and add the
coordinates (i,j) € H to the LIP, and only those with descendants also to the LIS, as type
D entries. : :

2. Sorting pass:

(a) for each entry (i,7) in the LIP do:
i. output S,(3,7)
ii. if Sp(¢,7) = 1 then move (4,5) to the LSP and output the sign of ¢i j;
(b) for each entry (i,7) in the LIS do:
i. if the entry is of type D then
e output S,(D(z,7));
o if S,(D(i,7)) =1 then
— for each (k,1) € O(i, 7) do:
* output S,(k,1);
* if Sp(k,1) = 1 then add (k,!) to the LSP and output the sign of cx 1;
* if Sp(k,1) = 0 then add (k,I) to the end of the LIP;
ii. if £(i,5) # 0 then move (4,5) to the end of the LIS, as an entry of type L; else,
remove entry (,7) from the LIS;
(c) if the entry is of type L then

o output S,(L(%,5));

50

o if S,(L(3,7)) =1 then
— add each (k,I) € O(i,7) to the end of the LIS as an entry of type D,
— remove (i, j) from the LIS

3. Refinement pass: for each entry (i,7) in the LSP, except those included in the last sorting
pass (i.e., with same n), output the n-th most significant bit of |c; ;|-

4. Quantization-step update: decrement n by 1 and go to Step 2.

The decoding operation is almost exactly the same as the encoding operation. The decoder dupli-
cates the encoder’s execution path as it sorts the significant coefficients. The three lists (LIS, LIP
and LSP) are the same at both the encoder and the decoder at the same pass, which means that
the decoder implicitly recovers the ordering from the execution path, without the need for explicit
ordering information. For the value of n when a coordinate is moved to the LSP, it is known that
2" < |¢;.5] < 271 So the decoder uses that information, plus the sign bit that is input just after
the insertion in the LSP, to set & ; = +1.5 x 2". Also, during the refinement pass, the decoder
adds or subtracts 2"~! to & ; when it inputs the bits of the binary representation of [c; ;|. In this
manner, the distortion gradually decreases during both the sorting and refinement passes with the
receipt of each bit, which ensures a perfect progressive mode of transmission.

The SPIHT algorithm has been used for source coding of our test image. For a noiseless channel,
the rate vs. distortion performance shown if Figure 40 has been obtained:

SPIHT's Rate--Distortion curve for the test image

“ T T ; ' i J v

Figure 40: SPTHT’s rate versus PSNR performance for the test image.

It is evident that the rate vs. distortion performance of SPIHT is substantially high. It gives
relatively high PSNR values even for low rates. For 0.5 bpp, for example, a PSNR value of 40.30
dB is obtained which provides a sufficiently high image quality. To illustrate the high performance
of SPIHT, it is compared to vector quantization (VQ). The LBG algorithm [49] is used for vector

51

quantizer design, and the splitting algorithm is used for initialization. Table 9 depicts the com-
parison results. The training image used to form the codebook is statistically similar to the test

image.

Table 9: Comparison of SPIHT versus VQ as a function of rate.

: Rate (bpp) || PSNR (dB)

VQ | SPIHT

0.125 24.71 | 32.71
0.25 28.26 | 36.32
0.5 32.18 | 40.30

From Table 9, it is evident that SPIHT outperforms VQ by about 8 dB which is a substantially high
difference. For 0.25 and 0.125 bpp, the reconstructed images using VQ and SPIHT are respectively
shown in Figure 41. The images in the first column are coded using VQ, and the images in the
second column are coded using SPIHT. The first row of images have rate of 0.25 bpp, where the
images in the second row have rate of 0.125 bpp.

Figure 41: Reconstructed images using VQ (first column) and SPIHT (second column).

52

While SPIHT has very high performance in noiseless channels, it is very sensitive to channel errors
in noisy channels. The channel errors can cause unrecoverable loss of synchronization between
the encoder and the decoder. Total collapse of the reconstructed image often results from loss of
synchronization. In fact, the vast majority of images transmitted using this progressive wavelet-
based algorithm will frequently collapse even if a single transmitted information bit is incorrectly

decoded at the receiver.

SPIHT's high source coding performance has led many researchers to find efficient channel coding
schemes to reduce its excessive vulnerability to channel errors. The work of Sherwood and Zeger
[59] is one of the most successful studies to make SPIHT robust to noisy channels. They partition
the output bit stream of the SPIHT coder into consecutive blocks of length N, where they take
N = 200. Next, they add ¢ (c = 16) checksum bits based on the N bits along with zero bits to
flush the memory units of the convolutional encoder. The convolutional coder used in this study
is a rate-compatible punctured convolutional (RCPC) coder [60]. At the receiver, a list Viterbi
decoder with 100 paths is used to choose the path with the lowest path metric that also satisfies

the checksum equations.

In our study, we also use the RCPC encoder to channel encode the SPITHT’s output bit stream. The
RCPC coder is implemented using a (3,1,2) convolutional encoder with transfer function matrix
G(D) = [14 D,1+ D?,1+ D + D?|. The critical issue in this joint source and channel coder design
is the rate allocation problem. For a given channel probability of error and a given overall rate,
the optimum source rate and channel rate should be determined for maximum PSNR performance.
Once it is determined, a convenient puncturing rule is employed. The optimum rate allocation for
the system has been found using simulations. To make a performance comparison with the scheme
explained in the precious section, we have fixed the overall rate to 0.463 bpp which is the same as
the overall rate in the previous scheme. And we distributed this rate between the source coder and

channel coder.

Simulations have shown that

o for p < 1073, a rate 4/6 RCPC encoder with puncturing rule a;

o for p =2 x 1073, a rate 4/7 RCPC encoder with puncturing rule az
o for p =5 x 1073, a rate 4/9 RCPC encoder with punctﬁring rule as
o for p=10"2, a rate 4/10 RCPC encoder with puncturing rule a4

e for p > 1072, a rate 4/12 (which is the maximum rate for this coder) RCPC encoder with
puncturing rule as

are suitable choices. For these rates, the corresponding source coding rates and the puncturing
rules have been shown in Table 10 and the puncturing rule matrices are below.

ay =

=
o = O
— O
o= O

53

Table 10: Rate allocation for SPIHT + RCPC System.

Rate Allocation || Source Coding Rate Channel Coding Rate | Overall Rate
Scheme and Puncturing Rule
Scheme I R, = 0.463/1.5 = 0.309 bpp | 4/6 PCC, a1 R, = 0.463 bpp
Scheme II R, = 0.463/1.75 = 0.265 bpp | 4/7 PCC, ag R; = 0.463 bpp
Scheme III R, = 0.463/2.25 = 0.206 bpp | 4/9 PCC, a3 R; = 0.463 bpp
Scheme IV R, = 0.463/2.5 = 0.185 bpp | 4/10 PCC, a4 R; = 0.463 bpp
Scheme V R, =0.463/3 = 0.154 bpp 4/12 PCC, as R, = 0.463 bpp

ja—ry
(o]

as =

- o

o~

—
-

[y
[y
fory
[y

ag=|

e
W
e
-t et

as =

fuy
ok
Pt
ot

The performance of the proposed system has been shown in Figure 42. We used the same two
rates that were used in the previous section, namely R=0.463 bpp and R=0.818 bpp. In Figure
43 and 44, the performance of this system and the system proposed in the previous section are
compared for the same rate pairs. Note that using SPIHT for the source coder and RCPC codes as
the channel coder, we can achieve any desired rate. In other words, exact rate control is possible,
which is not true for the previous system. It is clear that this new system has superior performance
as compared to the previous joint source channel coding scheme. It owes its higher performance to
the efficient source coding scheme, namely SPIHT. It should be noted, on the other hand, that an
efficient data compression system removes, to the extent possible, the redundancy in the source and
retains the useful (nonredundant) part in an effort to reduce the rate. This removal of redundancy,
in turn, can introduce a great deal of sensitivity to the channel errors. The channel errors, if not
dealt with properly, can result in significant degradations in the performance of the compression
scheme. It has been observed that SPIHT, as a very efficient source coding scheme, is also very
sensitive to channel errors. It is so vulnerable that total collapse of the reconstructed image is

54

possible even if a single transmitted bit is incorrectly decoded at the receiver. The channel coder
on the other hand is very simple as compared to previous method’s variable length list Viterbi
decoder with MAP metric. The channel coder can be further improved as in Sherwood and Zeger’s
[59] work for better error correcting performance.

Performance Comparison

RSNR (dB)
o

8

15}

N T :

[4». SPIHT + PCC, R=0.463 bpp | :

#- SPHT + PCC, R=0.818bpp | : .

Dololiiiing DL iiia o3 Liiiing M

10™ 10~ 10° 10"
Channe! Probability of Error

Figure 42: Performance comparison of SPIHT with punctured convolutional coding at different
rates.

©
35
m_—
Eadl
s
[+
4
(7]
a:,‘,o,
15}
S O A NP £ PO S ST
7 9/7 Daubechies + 3-bit DPCM + Hufiman, R=0.463 bpp
+ SPIHT + PCC, R=0.463 bpp
5 R R H ; i
107° 10™ 10° 107 10”

Channel Probability of Error

Figure 43: Performance comparison of SPIHT with punctured convolutional coding to a concate-
nated subband joint-source coding channel scheme.

55

Performance Comparison

: M T
40+ * N
35 @
L) S S R S F S A LI R R RS S
Gost
[+
r4
7]
© . :
20+ . L
15t : [
O IO S I N S B S E
> /7 Daubechies + 3-bit OPCM + n + 1/2 NCE, R=0.818 bpp :
+ SPIHT + PCC, R=0.818 bpp i
5 Lo DL posiiin DL iiiiiig i
107 10™ 10 10° 107

Channel Probability of Error

Figure 44: Performance comparison of SPIHT with punctured convolutional coding to a concate-
nated subband joint-source channel coding scheme with a nonbinary convolutional encoder..

5.6 Channel-Optimized Vector Quantization

Vector quantization (VQ) [49], as a means of data compression, has received a tremendous amount
of attention in the past decade. Utilizing vector quantization instead of scalar quantization has
resulted in dramatic performance improvements (in terms of rate reduction for a given level of
distortion, or reduction of distortion for a given rate) in various image coding applications. The
superiority of VQ is due to Shannon’s [21] source coding theorem which basically says that encoding
sequences of outputs can provide an advantage over the encoding of individual samples. This result,
proved by taking longer and longer sequences of inputs, indicates that a quantization strategy that
works with sequences or blocks of output would provide some improvement in performance over
scalar quantization. This fact is the main motivation behind vector quantization.

In vector quantization, the source output is grouped into blocks or vectors. In image coding, for
example, a vector is composed of k pixels. These pixels are chosen to be neighboring pixels in the
two-dimensional image plane. This vector of source outputs forms the input to the vector quantizer.
At both the VQ encoder and decoder, there is a set of k-dimensional vectors which is called the
codebook of the vector quantizer. The codebooks at the encoder and the decoder are the same,
and contain M k-dimensional vectors, called the code-vectors.

The operation of a vector quantizer is briefly as follows: The encoder forms the k-dimensional
vectors, and compares each vector to each of the M code-vectors in the codebook. For a given
input vector, it finds the code-vector (amongst the M possible code-vectors in the codebook) that
is closest to the input vector. Next, it transmits the inder of the code-vector it matches with the
input vector. For a codebook of size M, the index is a logy M-bit number. The encoder and the

56

decoder uses these log, M bits to identify a vector of k pixels. In other words, the number of bits
per pixel for VQ with codebook size of M and vector size of k is lﬁ%ﬂ. This is the rate of this
vector quantizer. Finally, the decoder receives the index values. Since it has the same codebook
as the encoder, it matches the index values with the corresponding code-vectors, and reconstructs

the image using them.

One of the main advantages of vector quantization is its simplicity. The encoder simply makes
comparisons with the input vector and M code-vectors in the codebook, and transmits the index
of the closest code-vector. The operation of the decoder is indeed simpler: it receives the index and

finds the corresponding code-vector using a lookup table.

The main challenge in the implementation of vector quantizers is the codebook design. The de-
termination of the code-vectors that would yield the minimum distortion for a given rate is a
nontrivial problem. Various approaches to the design of codebooks for vector quantizers have been
proposed in the literature. An efficient, as well as practical method of codebook design for VQ is the
Linde-Buzo-Gray (LBG) algorithm [49] that has been widely used in VQ applications. The LBG
algorithm is an iterative method of designing VQ codebooks, where at each iteration the distortion
is reduced gradually. The algorithm operates on a training set of vectors {Xa}Y_, , where the
training set should have similar characteristics to the source to be coded. The codebook is formed
using the training set. Therefore, it is important that the source and the training set should be
statistically alike for better coding performance. The LBG algorithm recursively finds and updates

quantization regions, {V,-(k) }M, and the code-vectors (called reconstruction vectors), denoted by
{Y,-(k)},.‘il at the k-th step. The overall distortion at the k-th step, D) is evaluated between
the training vectors and the corresponding reconstruction vectors. The recursion and update of

the quantization regions and the reconstruction vectors is continued until the average distortion is
reduced below the threshold, e. The algorithm, using the notation above, is summarized as follows:

1. Set k = 0. Start with an initial set of reconstruction vectors {Y,-(o) }M, and a set of training
vectors {Xp}N_,. Set D = 0. Choose a threshold . '

2. Update the quantization regions

VW = (X, 1 d(Xa,Y)) <d(Xa,Y;) Vi#i} i=12...,M ®)

3. Compute the average distortion D) between the training vectors and the corresponding
reconstruction vectors.

4. If Q(ﬂl—“){%g"—” < € stop; otherwise, continue.
5. k = k + 1. Update the reconstruction vectors {Y‘-(k)}f‘i1 that are the average values of the
elements of each of the quantization regions V,-"'l. Go to Step 2.

There are some problems in the implementation of the LBG algorithm. One arises in the first step
of the algorithm. The performance of the LBG algorithm is closely related with the initial choice of
the reconstruction vectors. Different initial conditions selected for the reconstruction vectors yield
different distortion values at each step. Therefore, the problem of initialization of reconstruction
vectors has a major impact on the performance of VQ. One of the most commonly used ways of

57

initializing the LBG algorithm is the splitting technique [49]. In this technique, the LBG algorithm
starts with a single reconstruction vector (which is the average value of the all training vectors).
And at each step, the number of reconstruction vectors is doubled by adding to each of them a
perturbation vector. With the doubling of reconstruction vectors, the quantization regions and
reconstruction vectors are updated using the LBG algorithm. The splitting technique is a practical
and efficient way of initializing the LBG algorithm.

Another problem in the implementation of the LBG algorithm comes into play in the second step
of the algorithm. It is possible that, after updating the quantization regions, one (or more) of the
new quantization regions may be empty. One way of getting around this problem is to remove the
reconstruction vector with no training vector associated with it, and to assign one of the training
vectors that belongs to the reconstruction vector with the greatest number of training vectors as
the new reconstruction vector.

For an extensive discussion of these and other problems in vector quantization, [50] is a compre-
hensive reference.

While vector quantization is an efficient source coding technique (as compared to scalar quanti-
zation), its performance may be expected to be poorer than that of scalar quantization in noisy
channels. This may be justified as follows: a source coding technique becomes more efficient as
it reduces more redundancy in the source. As the redundancy is removed, the remaining nonre-
dundant part of the source (source encoded data) becomes more sensitive to the channel errors.
SPIHTs, as & very efficient source coding technique, excessive vulnerability to transmission errors
is an example of this phenomenon. Similar discussion for the sensitivity of efficient source coding
schemes to bit errors was made in the previous section. S .

In an effort to increase VQ’s performance in noisy channels, a number of techniques have been
proposed in the literature [51] - [56]. In this section, we implement the channel-optimized vector
quantizer proposed in [54].

The objective in the design of the channel-optimized vector quantizer is to introduce the effect of
the channel in the VQ design process in order to maximize the performance of the vector quantizer
for noisy channels. For this purpose, the distortion measure is modified to account for the channel
error probability. The design of a channel-optimized vector quantizer is briefly explained below.

A k-dimensional, M-level VQ is designed for a discrete memoryless channel (DMC) with input and
output alphabets {1,2,... M}. P(jli) is the probability that index j is received given that index ¢
is transmitted. The k-dimensional source output vector is denoted as T = (Tnk, Tnk+1, - - - » Tnk+k—1)
and has a k-fold probability density function (p.d.f), p(z).

The encoder is described in terms of a partition of quantization regions P = {51, S2,... ,SMm}
according to the following encoder mapping:

() =1, if res;, i€ {1,2,...M}. 9)

The decoder is described in terms of the codebook C = {ey,¢s,...,cm} according to the following

decoder mapping:
g(j)'—"cj’ j€{112a'“M}' (10)

58

Let the distortion caused by representing the source vector x by a code-vector y be denoted by
d(z,y). The average distortion, D, of this system is

1 M M
= 23> PGl /S pla)d(z,c;)dz. (11)

i=1 j=1

Note that the expression of the average distortion given above accounts for the distortion that
arises from the source encoder as well as the channel.

The goal in channel-optimized vector quantization (COVQ) design is to choose the codebook C and
quantization regions P to minimize the average distortion D. It has been shown in [54] that the
optimal quantization regions as well as the optimal codebook for the mean squared error distortion
measure is evaluated as:

M M
st={z: PGl —cilP <SPGl —csl, W}, ie{l2..M} (12)
=1 j=1

o _ Tz PUl) Js, ap()de

77 M, P(li) fs, plx)da |
The equations (12) and (13) are applied recursively: In (12), the quantization regions are evaluated.
These quantization regions are then applied in (13) to find the code-vectors which are again invoked
in (12) to find the quantization regions. It should be noted that both equations have the term P(j}3)
that introduces the channel effect into the design of the COVQ. In this sense, the channel-optimized
vector quantizer falls into the category of constrained joint source and channel coders, where the
source coders are modified to account for the presence of a noisy channel. In COVQ, the vector
quantizer is optimized subject to a noisy channel constraint.

je{L,2,...M}. (13)

The channel-optimized vector quantizer as well as the regular vector quantizer have been simulated
for the test image in Figure 32. Different codebooks have been obtained for different channel error
probabilities using COVQ. The channel is a BSC and the training image is different from the test
image. Codebook size, M, is 16, and the vectors are of dimension 2 X 2. Thus, the rate is 1 bpp.
The results are depicted in Figure 45.

One observation that can be made from the figure is that the COVQ performs slightly poorer
than VQ for very low channel error probabilities. As the channel error rate increases, the COVQ
performs better. For p = 1073, the COVQ and VQ have almost the same PSNR performance.
For higher error probabilities, the COVQ surpasses VQ. For p = 0.02, for example, the COVQ
outperforms the VQ by about 1.8 dB.

As the codebook size increases, the codebook design of COVQ becomes computationally burden-
some. Also, since the number of code vectors increases, code vectors get closer to each other in the
Euclidean sense. Therefore, the COVQ does not perform significantly better than VQ. These are
the observations from the simulations for M = 256 and vector size of 4 x 4 which yields a rate of

0.5 bpp.

Next, the performance of the COVQ has been investigated for the case where the encoder and the
decoder have a wrong estimate of the channel error probability. This is called channel mismatch. Let

59

Performance Comparison

Ry

ASNR (dB)
13

n
-~
T

i+ VQ,R=tbpp
«- Channel Optimized VQ, R=1bpp

18 . - L ; :
10™ 10° 107 10"
Channe! Probability of Error :

Figure 45: Performance comparison of a vector quantization (VQ) scheme to a channel optimized
vector quantization scheme (COVQ).

p denote the actual channel error probability and p denote the estimated channel error probability.
Forp = 10~2 and p = 10~!, which is an overestimation by a factor of 10, the PSNR value is obtained
as 26.501 dB which is a drop of 1.51 dB. This value is even worse than regular VQ by 0.488 dB.
On the other hand for the same channel error probability, if # = 10~2 which is an underestimation
by a factor of 10, the PSNR is 27.854 dB which is a drop of only 0.157 dB. Moreover, this value is
still higher than that of VQ by 0.915 dB. Therefore, the penalty of overestimation of the channel
error probability is significantly higher than that of underestimation. '

References

[1] M. Mooser, “Some periodic convolutional codes better than any fixed code,” IEEE Trans.
Inform. Theory, vol. IT-29, pp. 750-751, Sept. 1983.

[2] R. Palazzo, Jr., “Time varying convolutional encoders better than the best time invariant
encoders,” IEEE Trans. Inform. Theory, vol. 39, No. 3, pp. 1109-1110, May 1993.

[3] P. Joong Lee, “There are many good periodically time-varying convolutional codes,” IEEE
Trans. Inform. Theory, vol. 35, No. 2, pp. 460-463, March 1989.

[4] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press,
1999.

[5] J. P. Odenwalder, Optimal decoding of convolutional codes, Ph.D. dissertation, Dept. Syst.
Sci. Eng. Appl. Sci., Univ. California, Los Angeles, 1970.

60

[6] K. J. Larsen, “Short convolutional codes with maximal free distance for rate 1/2, 1/3, and
1/4,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 37 1-372, May 1973.

[7] R. Johannesson, “Robustly optimal rate one-half binary convolutional codes,” IEEE Trans.
Comman. Tech., vol. COM-21, pp. 464-468, July 1975.

[8] R. Johannesson, “Some rate 1/3 and 1/4 binary convolutional codes with an optimal distance
profile,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 281-183, Mar. 1977.

[9] D. G. Daut, J. W. Modestino, and L. D. Wismer, “New short constraint length convolutional
code constructions for selected rational rates,” IEEE Trans. Inform. Theory, vol. IT-28, No.

5, pp. 794-800, Sept. 1982.

[10] M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum of
convolutional codes,” IEEE Trans. Inform. Theory, vol. 35, No. 6, pp. 1146-1159, Nov. 1989.

[11] S.Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice
Hall, 1983.

[12] A. J. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE
Trans. Commun. Technol., vol. COM-19, pp. 751-772, Oct. 1971.

[13] Berrou, C.; Glavieux, A.; Thitimajshima, O. “Near Shannon limit error-correcting coding and
decoding: Turbo-codes”, Proc. ICC’93, pp.1064-70, 1993. ‘

[14] Massey, P. C.; Takeshita, 0.Y.; Costello, D. J. Jr. “Contradicting a Myth: Good Turbo Codes
With Large Memory Order”, Proceedings of the International Symposium on Information The-
ory, pp- 122, June 2000.

[15] Pérez, L. C.; Seghers, J.; Costello, D. J. Jr. “A Distance Spectrum Interpretation of Turbo
Codes”, IEEE Trans. on Inform. Theory, Vol. 42, No. 6, November 1996.

[16] Benedetto, S.; Montorsi, G. “Unveiling Turbo Codes: Some Results on Parallel Concatenated
Coding Schemes”, IEEE Trans. on Inform. Theory, Vol. 42, No. 2, March 1996.

[17] Takeshita, O. Y.; Collins, O. M.; Massey, P. C.; Costello, D. Jr. “A Note on Asymmetric
Turbo-Codes”, IEEE Communications Letters, Vol. 3, No. 3, November 1999.

[18] Dolinar, S.; Divsalar, D. “Weight Distribution for Turbo Codes Using Random and Nonrandom
Permutations”, TDA Progress Report, 42-122, August 15, 1995.

[19] ten Brink, S., “Designing Iterative Decoding Schemes with the Extrinsic Information Transfer
Chart”, AEU International Journal of Electronics and Communications, Vol. 54, No. 6, pp.

389-98, November 2000.

[20] Palazzo, R. Jr. “Analysis of Periodic Linear and Nonlinear Trellis Codes”, Ph.D Dissertation,
University of California, Los Angeles.

[21] C. E. Shannon, “The mathematical theory of communication,” BSTJ, vol. 28, pp. 379-423,
Oct. 1949.

[22] T. M. Cover, and J. A. Thomas, Elements of Information Theory. New York: John Wiley,
1991. ’

61

[23] S. Vembu and S. Verdu, “The source-channel separation theorem revisited,” IEEE Trans.
Inform. Theory, vol. IT-41, pp. 44-54, Jan. 1995.

[24] T. C. Ancheta, Jr., “Joint source channel coding,” Ph.D. dissertation, Univ. Notre Dame,
Notre Dame, IL, Aug. 1977.

[25] J. L. Massey, “Joint source and channel coding,” in Communication Systems and Random
Process Theory, J. K. Skwirzynski, Ed. The Netherlands: Sijthoff and Nordhoff, 1978, pp.

279-293.

[26] J. G. Dunham and R. M. Gray, “Joint source and channel trellis encoding,” IEEE Trans.
Inform. Theory, vol. IT-27, pp. 516-519, July 1981.

[27) E. Ayanoglu and R. M. Gray, “The design of joint source and channel trellis waveform coders,”
IEEE Trans. Inform. Theory, vol. IT-33, pp. 855-865, July 1987.

[28] J. W. Modestino, D. G. Daut, and A. L. Vickers, “Combined source channel coding of images
using the block cosine transform,” IEEE Trans. Commun., vol. COM-29, pp. 1262-1274, Sept.
1981. : .

[29] J. W. Modestino, V. Bhaskaran, and J. B. Anderson, “Iree encoding of images in the presence
of channel errors,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 667-697, Nov. 1981.

[30] D. Comstock and J. D. Gibson, “Hamming coding of DCT compressed images over noisy
channels,” IEEE Trans. Commun., vol. COM-32, pp. 856-861, July 1984.

[31] C. C. Moore and J. D. Gibson, “Backward adaptive lattice and transversal predictors in
- ADPCM,” IEEFE Trans. Commun., vol. COM-33, pp. 74-82, Jan. 1985.

[32] D. J. Goodman and C. E. Sundberg, “Combined source and channel coding for variable bit-rate
speech transmission,” Bell Syst. Tech. J., vol. 62, pp. 2735-2764, Nov. 1983.

[33] C.-E. Sundberg, “The effect of single bit errors in standard PCM systems,” IEEE Trans.
Commun., vol. COM-24, pp. 1062-1064, June 1976.

[34] M. Srinivasan, R. Chellapa, and P. Burlina, “Adaptive source-channel subband video coding
for wireless channels,” Proc. IEEE ICIP, pp. 85-88, Oct. 1995.

[35] K.-P. Ho and J. M. Kahn, “Transmission of analog signals using multicarrier modulation: a
combined source-channel coding approach,” IEEE Trans. Commun., vol. COM-44, pp. 1432-
1443, Nov. 1996.

[36] A. J. Kurtenbach and P. A. Wintz, “Quantizing for noisy channels,” IEEE Trans. Commun.
Technol., vol. COM-17, pp.291-302, Apr. 1969.

[37] N. Farvardin and V. Vaishampayan, “Optimal quantizer design for noisy channels: an approach
to combined source-channel coding,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 827-838,

Nov. 1987.

[38] K.-Y. Chang and R. W. Donaldson, “Analysis, optimization, and sensitivity study of differen-
tial PCM systems operating on noisy communication channels,” IEEE Trans. Commaun., vol.

COM-20, pp. 338-350, June 1972.

62

[39] R. Steele, D. J. Goodman, “Detection and selective smoothing of transmission errors in linear
PCM,” Bell Syst. Tech. J., vol. 56, pp. 399-409, Mar. 1977.

[40] R. Steele, D. J. Goodman, and C. A. McGonegal, “A difference detection and correction
scheme for combating DPCM transmission errors,” IEEE Trans. Commun., vol. COM-27, pp.
252-255, Jan. 1979.

[41] K. N. Ngan and R. Steele, “Enhancement of PCM and DPCM images corrupted by transmis-
sion errors,” IEEE Trans. Commun., vol. COM-30, pp. 257-269, Jan. 1982.

[42] G. H. Pitt, III, L. Swanson, and J. H. Yuen, “Image statistics decoding for convolutional
codes,” Tech. Rep. TDA Progress Rep. 42-90, JPL, Pasadena, CA, Apr.-June 1987.

[43] R. C. Reininger and J. D. Gibson, “Soft decision demodulation and transform coding,” IEEE
Trans. Commun., vol. COM-31, pp. 572-577, Apr. 1983.

[44] K. Sayood and J. C. Borkenhagen, “Utilization of correlation in low rate DPCM systems for
channel error protection,” in Proc. IEEE ICC, June 1986, pp. 1888-1892.

[45] K. Sayood and J. C. Borkenhagen, “Use of residual redundancy in the design of joint source
channel coders,” IEEE Trans. Commun., vol. 39, pp. 838-846, Mar. 1991.

[46] K. Sayood, F. Liu, and J. D. Gibson “A constrained joint source /channel coder design,” IEEE
J. Select. Areas in Commaun., vol. 12, pp. 1584-1593, Dec. 1994.

[47] M. E. Hellman, “On using natural redundancy in the design of joint source channel coders,”
IEEE Trans. Commaun., vol. COM-22, pp. 1690-1693, Oct. 1974.

[48] M. E. Hellman, “Convolutional source encoding,” IEEE Trans. Inform. Theory, vol. IT-21,
pp. 651-656, Nov. 1975.

[49] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans.
Commun., vol. COM-28, pp. 84-95, Jan. 1980. .

[50] A.Gersho and R. M. Gray, Vector Quantization and Signal Compression. Norwell, MA: Kluwer
Academic Publishers, 1991.

[51] J. R. B. De Marca and N. S. Jayant, “An algorithm for assigning binary indices to the code
vectors of a multidimensional quantizer,” in Proc. IEEE Int. Comm. Conf., Seattle, WA, pp.
1128-1132, June 1987.

[52] K. A. Zeger and A. Gersho, “Zero redundancy channel coding in vector quantization,” IEEE
Electron. Lett., vol. 23, pp. 654-655, June 1987.

[53] H. Kumazawa, M. Kasahara, and T. Namekawa, “A construction of vector quantizers for noisy
channels,” Electronics and Engineering in Japan, vol. 67-B, no. 4, pp. 39-47, 1984.

[54] N. Farvardin, “A study of vector quantization for noisy channels,” IEEE Trans. Inform. The-
ory, vol. IT-36, pp. 799-809, July 1990.

[55] N. Farvardin and V. Vaishampayan, “On the performance and complexity of channel-optimized
vector quantizers,” IEEE Trans. Inform. Theory, vol. IT-37, pp. 155-160, Jan. 1991.

63

[56] N.Phamdo, N. Farvardin and T. Moriya, “A unified approach to tree-structured and multistage
vector quantization for noisy channels,” IEEE Trans. Inform. Theory, vol. IT-39, pp. 835-850,

May 1993.

[57] A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning
in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Tech., vol. 6, June 1996.

[58] M. Antonini, M. Barlaud, P. Mathieu, and L Daubechies, “Image coding using wavelet trans-
form,” IEEE Trans. Image Processing, vol. 1, pp. 205-220, April 1992.

[59] P. G. Sherwood and K. Zeger, “Progressive image coding for noisy channels,” IEEE Signal
Processing Letters, vol. 4, No. 7, July 1997.

[60] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their ap-
plications,” IEEE Trans. Commun., vol. COM-36, pp. 389-400, Apr. 1988.

